Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT01608620
Other study ID # CCC 2012 KRS EPI
Secondary ID
Status Active, not recruiting
Phase N/A
First received May 28, 2012
Last updated May 26, 2015
Start date May 2012
Est. completion date September 2016

Study information

Verified date May 2015
Source University of Toronto
Contact n/a
Is FDA regulated No
Health authority Canada: Ethics Review Committee
Study type Observational

Clinical Trial Summary

Since uncontrolled observational studies first linked fructose to the epidemic of obesity almost a decade ago, it has become a focus of intense concern regarding its role in the obesity epidemic and increasing burden of cardiometabolic disease. Despite the uncertainties in the evidence, international health organizations have cautioned against moderate to high intakes fructose-containing sugars, especially those from sugar sweetened beverages (SSBs). To improve the evidence on which nutrition recommendations are based, the investigators propose to study of the role of fructose-containing sugars in the development of overweight/obesity, diabetes, hypertension, gout, and cardiovascular disease, by undertaking a series of systematic syntheses of the available prospective cohort studies. Prospective cohort studies have the advantage of relating "real world" intakes of sugars to clinically meaningful disease endpoints over long durations of follow-up. The findings generated by this proposed knowledge synthesis will help improve the health of consumers through informing recommendations for the general public, as well as those at risk of diabetes and cardiovascular disease.


Description:

Background: Fructose has become a focus of intense concern regarding its links to the obesity epidemic and increasing burden of cardiometabolic disease. There have been dozens of editorials, commentaries, and letters in the scientific literature and numerous pieces in the lay and social media calling for efforts to restrict its intake and even regulate it like tobacco or alcohol. Uncontrolled ecological analyses which have linked increasing fructose intake with increasing obesity, diabetes, and hypertension rates and animal models of fructose induced metabolic syndrome and hypertension, which overfeed fructose at levels of exposure far beyond actual population levels of intake, have been used to underpin this debate. Evidence from well-adjusted prospective cohort studies also suggest a positive association between the consumption of sugar-sweetened beverages and increased energy consumption and weight gain. But not all meta-analyses of the available prospective cohort studies have supported this conclusion for SSBs, and no meta-analyses have investigated the effect of total fructose-containing sugars which also include grain and fruit sources on incident overweight/obesity, diabetes, metabolic syndrome, hypertension, gout, and cardiovascular disease. Despite the limitations in extrapolating from the available observational data and their inconsistency with data from controlled trials in humans (the highest level of evidence used in evidence based medicine) which do not show any adverse metabolic effects under isocaloric feeding conditions, the heart and diabetes associations have taken a risk reduction approach to added fructose-containing sugars, setting highly restrictive upper thresholds for their intake to achieve and maintain healthy body-weights and avoid adverse lipid effects.

Objective: To improve the evidence on which recommendations and public health policy are based, we will conduct a series of systematic reviews and meta-analyses of the role of fructose-containing sugars in the development of cardiometabolic disease in prospective cohort studies. A total of 5 analyses are proposed: (1)overweight/obesity, (2) diabetes/metabolic syndrome, (3) hypertension, (4) gout, and (5) coronary heart disease (CHD).

Design: The planning and conduct of the proposed meta-analyses will follow the Cochrane handbook for systematic reviews of interventions. The reporting will follow the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines.

Data sources. MEDLINE, EMBASE, CINAHL and The Cochrane Central Register of Controlled Trials (Clinical Trials; CENTRAL) will be searched using appropriate search terms, supplemented by manual, hand searches of bibliographies.

Study selection: We will include prospective cohort studies investigating the relation of fructose-containing (fructose, sucrose, and HFCS) sugars to incident overweight/obesity, diabetes, metabolic syndrome, hypertension, gout, and cardiovascular disease.

Data extraction. Two investigators will independently extract information about study design, sample size, subject characteristics, fructose form, fructose exposure levels, duration/person-years of follow-up, background diet profile, adjustments of models. Risk ratios for clinical outcomes will be extracted or derived from clinical event data across quantiles of exposure. Risk of bias will be assessed using the Cochrane Risk of Bias tool.

Outcomes: Each of the 5 proposed analyses will assess a different cardiometabolic disease outcome: (1) overweight/obesity, (2) diabetes/metabolic syndrome, (3) hypertension, (4) gout, and (5) CHD.

Data synthesis. The natural log-transformed relative risks of clinical outcomes comparing the highest exposure level to the reference group from each cohort will be pooled using the generic inverse variance method with random effects models. Heterogeneity will be assessed by Cochrane's Q and quantified by I2. Sensitivity analyses and a priori subgroup analyses will be undertaken to explore sources of heterogeneity including the effect of underlying disease status, sex, sugar type (fructose, sucrose, HFCS), follow-up (<10-years, >=10-years), level of adjustment of models, and Cochrane risk of bias on the effect of fructose. Significant unexplained heterogeneity will be investigated by additional post hoc subgroup analyses. Meta-regression analyses will assess the significance of subgroups analyses. Dose-response analyses will be undertaken using random-effects generalized least squares trend estimation models (GLST), appropriate for weighted regression of summarized dose-response data with dependent components(i.e. the reference exposure level). If insufficient evidence of a linear relationship is found, then we will do spline curve modeling (the MKSPLINE procedure) to characterize segments of the dose response curve where a linear approximation best describes the data. Publication bias will be assessed by the inspection of funnel plots and using Begg's and Egger's tests.

Knowledge translation plan: The results will be disseminated through interactive presentations at local, national, and international scientific meetings and publication in high impact factor journals. Target audiences will include the public health and scientific communities with interest in nutrition, diabetes, obesity, and cardiovascular disease. Feedback will be incorporated and used to improve the public health message and key areas for future research will be defined. Applicant/Co-applicant Decision Makers will network among opinion leaders to increase awareness and participate directly as committee members in the development of future guidelines.

Preliminary findings: To address the uncertainties in the evidence, we conducted a series of Canadian Institutes of Health Research (CIHR) funded systematic reviews and meta-analyses of controlled feeding trials of the effect of fructose on cardiometabolic risk (ClinicalTrials.gov registration number: NCT01363791). We found that fructose in isocaloric substitution for other sources of carbohydrate (isocaloric trials) does not increase body weight, lipids, blood pressure, uric acid, or insulin and even improves glycemic control. There was, however, a signal for harm under certain conditions. High doses of fructose increased triglycerides in isocaloric trials, and fructose providing excess energy at extreme doses relative to control diets (hypercaloric trials) also increased body weight, triglycerides, and uric acid. The implications of these findings for "real world" dietary advice, however, were complicated by several factors. First, fructose is not commonly consumed in isolation as a sweetener. Sucrose and HFCS are the primary fructose-containing sweeteners in the U.S. diet. Second, the level of fructose exposure in the available trials was well above population levels of intake, exceeding the 95th-percentile for U.S. intake in most of the isocaloric trials and in all of the hypercaloric trials, in which the excess energy brought by fructose was an important source of confounding. Finally, the available trials investigated effects on biomarkers of disease and not clinically meaningful events. The proposed systematic review and meta-analyses of prospective cohort studies will address these limitations directly by investigating the relation of self-reported, "real world" intakes of all fructose-containing sugars (fructose, sucrose, and HFCS) to the development overweight/obesity, diabetes/metabolic syndrome, hypertension, gout, and cardiovascular disease.

Significance: The proposed project will aid in knowledge translation related to the effects of dietary fructose on overweight/obesity, diabetes/metabolic syndrome, hypertension, gout, and cardiovascular disease, strengthening the evidence-base for recommendations and improving health outcomes through informing consumers and guiding future research.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 1
Est. completion date September 2016
Est. primary completion date September 2014
Accepts healthy volunteers No
Gender Both
Age group N/A and older
Eligibility Inclusion Criteria:

- Prospective observational studies

- Assessment of fructose-containing sugar exposure

- Viable clinical outcome data by level of exposure

Exclusion Criteria:

- Ecological, cross-sectional, and retrospective observational studies, clinical trials, and non-human studies

- No assessment of fructose-containing sugar exposure

- No viable clinical outcome data by level of exposure

Study Design

Time Perspective: Prospective


Locations

Country Name City State
Canada The Toronto 3D (Diet, Digestive tract and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital Toronto Ontario

Sponsors (4)

Lead Sponsor Collaborator
John Sievenpiper Calorie Control Council, Canada Research Chairs Endowment of the Federal Government of Canada, Canadian Institutes of Health Research (CIHR)

Country where clinical trial is conducted

Canada, 

References & Publications (8)

Ha V, Sievenpiper JL, de Souza RJ, Chiavaroli L, Wang DD, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, Dibuono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension. 2012 Apr;59(4):787-95. doi: 10.1161/HYPERTENSIONAHA.111.182311. Epub 2012 Feb 13. Review. — View Citation

Jayalath VH, Sievenpiper JL, de Souza RJ, Ha V, Mirrahimi A, Santaren ID, Blanco Mejia S, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ. Total fructose intake and risk of hypertension: a systematic review and meta-analysi — View Citation

Sievenpiper JL, Carleton AJ, Chatha S, Jiang HY, de Souza RJ, Beyene J, Kendall CW, Jenkins DJ. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care. 2009 Oct;32(10):1930-7. doi: 10.2337/dc09-0619. Epub 2009 Jul 10. Review. — View Citation

Sievenpiper JL, Chiavaroli L, de Souza RJ, Mirrahimi A, Cozma AI, Ha V, Wang DD, Yu ME, Carleton AJ, Beyene J, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Kendall CW, Jenkins DJ. 'Catalytic' doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012 Aug;108(3):418-23. doi: 10.1017/S000711451200013X. Epub 2012 Feb 21. Review. — View Citation

Sievenpiper JL, de Souza RJ, Jenkins DJ. Sugar: fruit fructose is still healthy. Nature. 2012 Feb 22;482(7386):470. doi: 10.1038/482470e. Erratum in: Nature. 2012 Mar 22;483(7390):407. — View Citation

Sievenpiper JL, de Souza RJ, Kendall CW, Jenkins DJ. Is fructose a story of mice but not men? J Am Diet Assoc. 2011 Feb;111(2):219-20; author reply 220-2. doi: 10.1016/j.jada.2010.12.001. — View Citation

Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J, Chiavaroli L, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Kendall CW, Jenkins DJ. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med. 2012 Feb 21;156(4):291-304. doi: 10.7326/0003-4819-156-4-201202210-00007. Review. — View Citation

Wang DD, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Cozma AI, Mirrahimi A, Yu ME, Carleton AJ, Di Buono M, Jenkins AL, Leiter LA, Wolever TM, Beyene J, Kendall CW, Jenkins DJ. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr. 2012 May;142(5):916-23. doi: 10.3945/jn.111.151951. Epub 2012 Mar 28. Review. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Overweight/obesity analysis Risk ratios for incident Overweight and obesity by total fructose-containing sugar exposure up to 1.5-years No
Primary Diabetes/metabolic syndrome analysis Risk ratios for incident diabetes and metabolic syndrome by total fructose-containing sugar exposure Up to 1.5-years No
Primary Hypertension analsysis Risk ratios for incident hypertension by total fructose-containing sugar exposure Up to 1.5-years No
Primary Gout analysis Risk ratios for incident gout by total fructose-containing sugar exposure Up to 1.5-years No
Primary Coronary heart disease (CHD) analysis Risk ratios for incident CHD by total fructose-containing sugar exposure Up to 1.5-years No
See also
  Status Clinical Trial Phase
Recruiting NCT04101669 - EndoBarrier System Pivotal Trial(Rev E v2) N/A
Recruiting NCT04243317 - Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults N/A
Terminated NCT03772886 - Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball N/A
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Recruiting NCT06019832 - Analysis of Stem and Non-Stem Tibial Component N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Recruiting NCT04575194 - Study of the Cardiometabolic Effects of Obesity Pharmacotherapy Phase 4
Completed NCT04513769 - Nutritious Eating With Soul at Rare Variety Cafe N/A
Withdrawn NCT03042897 - Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Recruiting NCT05917873 - Metabolic Effects of Four-week Lactate-ketone Ester Supplementation N/A
Active, not recruiting NCT04353258 - Research Intervention to Support Healthy Eating and Exercise N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Completed NCT01870947 - Assisted Exercise in Obese Endometrial Cancer Patients N/A
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Recruiting NCT05371496 - Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction Phase 2