View clinical trials related to Insulin Resistance.
Filter by:It is known that postprandial hyperglycemia increases the cardiometabolic risk in both diabetic and non-diabetic patients. Moreover, there is insufficient data on the effectiveness of exercise on preventing Type II diabetes mellitus in individuals with insulin resistance and prediabetes. This study aims to examine the effectiveness of resistance exercise in limiting postprandial hyperglycemia and the necessity of prescribing medication particularly in patients with beta-thalassemia and insulin resistance.
The investigators have already proven that Mitotic Activity Index (MAI)is the most robust measure of proliferation in breast cancer tissue. The purpose was to study whether 18 and 2-4 hours pre-operative per-oral carbohydrate loading (often given in gastrointestinal surgery i.e. enhanced recovery after surgery=ERAS) influences proliferation in the tumor, serum insulin characteristics, metabolic profile and survival.
This study determined the effect of 7 days of high-fat overfeeding on whole-body glycaemic control, glucose kinetics, skeletal muscle insulin signalling, and markers of skeletal muscle microvascular function in 15 healthy young individuals.
To evaluate the effects of preoperative oral carbohydrate on postoperative insulin resistance and tumor immunity in cervical cancer patients with neoadjuvant chemotherapy.
Current efforts to arrest the epidemic of type 2 diabetes mellitus (T2DM) have had limited success. Thus there is an urgent need for effective approaches to prevent the development of T2DM. It is widely accepted that the current epidemic is driven by an increase in global food abundance and reduced food quality, making changes in diet a key determinant of the T2DM epidemic. Dietary factors can affect cardio-metabolic health; among these factors, advanced glycation end-products (AGEs) in food are potential risk factors for insulin resistance and T2DM. AGEs are a heterogeneous group of unavoidable stable bioactive compounds. Endogenous formation of AGEs is a continuous naturally occurring process, and is the result of normal metabolism. However, increased formation of AGEs occurs during ageing and under hyperglycaemic conditions. AGEs are implicated in the development of diabetes and vascular complications. Over the past several decades, methods of food processing have changed and meals now contain excess fat and sugar and are most susceptible for the formation of AGEs. In addition, AGEs in food are highly desirable due to their profound effect on shelf life, sterility, flavour, colour, and thus food consumption. Hence, a substantial portion of AGEs are derived from exogenous sources, particularly food. These exogenous AGEs are potential risk factors for insulin resistance and the development of T2DM. The investigators recently found that dietary AGEs represent a significant source of circulating AGEs, and have similar pathogenic properties compared to their endogenous counterparts including the development of insulin resistance and T2DM. Taken together, dietary AGEs are proposed to play a pivotal role in the development and progression of T2DM and its complications. Reduction of dietary intake of AGEs may therefore be an alternative strategy to reduce the risk of vascular disease and insulin resistance. The investigators therefore hypothesize that dietary restriction of AGEs in overweight individuals improves insulin sensitivity, β-cell function, and vascular function.
The majority of obese have non-alcoholic fatty liver disease (NALFD). Currently, no pharmacological agents are licenced for the prevention or treatment of NAFLD, and weight loss, notoriously difficult to obtain (and specially to maintain), remains the only treatment option. Interestingly, curcumin, a phenolic compound extracted from the turmeric root, has from in vitro and animal studies shown promising effects in preventing and treating NAFLD, and the sparse available human data point in the same direction; but solid human data are missing. This study will delineate the effects of curcumin when treating NAFLD in humans. The primary aim of this study is to investigate the effect of 6 weeks of curcumin on liver fat content (assessed by magnetic resonance spectroscopy (MRS)) in obese subject with NAFLD. Additionally, a range of secondary endpoints have been chosen in order to delineate the role of NAFLD in the newly discovered liver-alpha cell axis governing circulating levels of the glucose-mobilising pancreatic alpha cell hormone glucagon and, thus, to elucidate the link between liver fat content and the risk of developing reduced glucose tolerance and type 2 diabetes (T2D). Also, the anti-inflammatory effect of curcumin will be elucidated, as inflammatory markers will be measured before and after intervention. Furthermore, the effect of curcumin will be measured by measuring the following parameters before and after intervention: Transient elastography, anthropometric measurements, body weight, appetite, food-consumption, calory balance, resting energy expenditure, gut microbiota, bioimpedance measures, visceral- and subcutaneous fat, glucose tolerance, lipids, blood pressure, pulse, liver parameters (blood-tests) and adipokines. During the oral glucose tolerance test before and after intervention, incretin hormones, glucagon, amino acids, insulin, c-peptide and urea will be measured.
Modern living is associated with an epidemic of type 2 diabetes mellitus (T2DM). Sleep disturbances such as insomnia or frequent awakenings are strong risk factors for T2DM with several studies indicating a central role of melatonin. Additionally, a certain single nucleotide polymorphism in the melatonin receptor gene, MTNR1B rs10830963, with an allele frequency of 30 %, is associated with increased fasting plasma glucose and T2DM. Due to treatment of, among other things, insomnia, the use of melatonin is increasing rapidly in Denmark with a 100-fold increase from 2007-2012 in children and adolescents. No previous studies have thoroughly assessed changes in glucose and fatty acid metabolism after 3 months of melatonin treatment in patients with T2DM.
The purpose of this study is to investigate the effect of interrupting prolong sedentary behavior with interval exercise on postprandial metabolism following a high fat glucose tolerance test.
Non-randomized open label study to investigate factors mediating changes in insulin sensitivity, glucose tolerance and other metabolic outcomes after bariatric surgery.
Double blinded, randomized, placebo controlled preliminary pilot exploratory investigation into the effects of brown seaweed extract supplementation, on fasting blood Insulin, fasting blood glucose, insulin sensitivity, blood inflammatory markers and tolerance in healthy overweight adults.