View clinical trials related to Wounds and Injuries.
Filter by:The use of handheld arterial 'stethoscopes' (continuous wave Doppler devices) are ubiquitous in clinical practice. However, most users have received no formal training in their use or the interpretation of the returned data. This leads to delays in diagnosis and errors in diagnosis. The investigators intend to create a novel machine-learning algorithm to assist clinicians in the use of this data. This study will allow the investigators to collect sound files from the use of the devices and compare the algorithms output to established, existing vascular testing. There will be no invasive procedures, and use of these stethoscopes is part of routine clinical care. If successful, this data and algorithm will be later deployed via smartphone app for point of case testing in a separate study
Assessment of wound healing progression after surgery is important. Currently blunt surrogate markers such as probing is used. Limitation of these markers is that it represents the history of healing and not the ongoing activity. As hallmark of healing is collagen remodeling, it is of interest to study the cytokine profile that relates to wound healing. Such knowledge may potentially lead to new diagnostic strategies to study wound healing in a better way reflecting the healing phenotype. Understanding wound healing at molecular level provides an in depth basis to develop treatment strategies that can prevent delayed healing.2 As recommended by Consensus Report of 10th European workshop on periodontology that, there is a need for more studies at cellular level to identify cytokine, chemokine, and intracellular signaling networks for better regenerative approaches10, the present clinical trial was designed. On account of a considerable lacunae in this area of periodontal research, this study is planned to assess the MMP-8 levels during the post-op healing following CAF+SCTG surgery for recession coverage and to better identify the mechanism involved in wound healing. This information can be used to prevent the normal surgical wound from altered healing experience.
This prospective pilot study is to enroll patients with clinically-defined infected wounds. Patients enrolled in the study will be followed for 16 weeks for wound closure (Phase A), and will then begin Phase B. 265 clinically diagnosed infected burn or chronic wound patients will be recruited for this study in Phase A. Based on the expectation that 89% of these wounds will heal within 16 weeks of enrollment, 234 of these patients will continue with the study for Phase B.
This is a prospective pilot study evaluating the safety and feasibility of implementing the ketogenic diet in children admitted to the pediatric intensive care unit with acute brain injury such as stroke, traumatic brain injury, and intracerebral hemorrhage. Animal studies suggest that in the aftermath of injury the brain's ability to use glucose as a fuel is impaired. The ketogenic diet is a high fat, low carbohydrate diet which is already used in clinical practice for the treatment of medication resistant epilepsy and is intended to switch the body over to burning fat rather than carbohydrates for fuel. In lieu of their standard tube-feeds, 5-10 children admitted to the PICU with these diagnoses will receive low carbohydrate, high fat ketogenic feeds for 2 weeks. We hypothesize that ketones will be detectable through serum tests and MRI spectroscopy studies of the brain within several days of diet initiation, and that there will be a low incidence of side effects and adverse events, Measures of interest will include the incidence of kidney stones, excessive acidosis and excessive hypoglycemia. The feasibility of implementing this protocol for a larger efficacy trial will be assessed through serial measurements of blood glucose, beta-hydroxybutyrate (a type of ketone body), and serum bicarbonate levels. In addition, levels of ketone bodies within the brain will be measured through MRI spectroscopy sequence which will be acquired at the same time as a follow-up MRI brain study ordered for clinical purposes.
The Aim of the Study is to Measure the Effect of Finnish Physician-staffed EMS Unit Treatment Methods on Traumatic Brain Injury (TBI) Patient Prognosis. Physician-staffed HEMS unit was implemented to the EMS 2011. The aim of this study is to compare the results against a historical database to see if the implementation of a HEMS unit will improve the prognosis of TBI patients.
The purpose of this study is to test the drug apomorphine in subjects who are in a Vegetative State or a Minimally Conscious State.