View clinical trials related to Walking, Difficulty.
Filter by:The goal of this clinical trial is to learn if a new therapy approach to improve walking ability in children with Cerebral Palsy is acceptable to the children and the families in a community setting. The main questions we look to answer are: 1. Do the children/teens tolerate the therapy and feel that it is helpful? 2. Do the parents/ families feel the therapy helps and is easy to commit to? 3. Do the children/teens complete all their therapy sessions and assessments as planned? The participants will trial the therapy for 30 hours over 6 weeks and will perform assessments before and after to see if they meet their goals. They will also be interviewed to see how they felt about the therapy when they finish.
The purpose of this study is to see outcome of patients with syme prothesis in order to comment the handfoot amputation.
Transcutaneous Electrical Nerve Stimulation (TENS) is a treatment that could potentially reduce walking problems and fatigue in persons with Multiple Sclerosis. However, extensive use of TENS in a clinical setting is hindered by a lack of neurophysiological understanding of the effects of TENS. The primary objective of this pilot study is therefore to investigate the effects of TENS on brain activity in pwMS measured with fMRI.
Peripheral artery disease (PAD) leads to higher mortality rates and strains healthcare systems due to increased costs. It causes leg pain during walking due to reduced blood flow. Nitric oxide (NO) deficiency contributes to vascular issues in PAD, with few effective treatments available. Passive calf muscle stretching boosts NO levels, vascular health, and walking ability in PAD patients. However, the inflammatory processes underlying these improvements are unclear. This study aims to track inflammatory markers and cardiovascular changes during 12 weeks of passive stretching. Additionally, combining stretching with dietary nitrate could further enhance walking capacity by reducing reactive oxygen species. The study will monitor inflammation, vascular function, and oxidative capacity to understand the effects on functional ability in PAD patients. This research is crucial for improving physical function and addressing exercise intolerance in PAD.
The ENLIGHTEN PAD Trial will collect preliminary data to test whether daily 660 nm light treatment of the lower extremities immediately before home-based walking exercise sessions improves six-minute walk distance at 4-month follow-up, compared to sham light, in people with lower extremity peripheral artery disease (PAD).
The investigators propose a pilot randomized trial to gather preliminary data to test the hypothesis that Fisetin will reduce abundance of senescent cells in blood, skeletal muscle, and both subcutaneous and inter muscular adipose tissue and improve 6-minute walk distance in 34 people with PAD. the investigators will determine whether greater declines in abundance of cells with senescent markers are associated with greater improvement in 6-minute walk distance in people with PAD. In exploratory analyses, the investigators will assess whether Fisetin reduces SASP and novel senescent markers in adipose tissue, muscle, and/or blood.
The goal of this clinical trial is to test a gait (walking) training program in non-ambulatory (unable to walk) chronic stroke survivors. The main question it aims to answer is: • Will gait training improve the cardiovascular system in non-ambulatory chronic stroke survivors better than a sitting leg cycling exercise? Participants will walk on a treadmill with a partial body-weight support system and the gait training device. Researchers will compare with a leg-cycling exercise to see if there are significant differences in resting heart rate, systolic blood pressure (SBP), and A1c levels in the blood.
The LIGHT PAD Trial is a Phase II multi-centered randomized clinical trial to collect preliminary data to test whether daily far red light treatment of the lower extremities in people with PAD improves six-minute walk distance, lower extremity perfusion, and ischemia-related damage in gastrocnemius muscle at four-month follow-up, compared to a sham control. Participants will complete 10 minutes of twice daily home treatment with either far red light or a sham light for four months.
The goal of this clinical trial is to compare the effects of exoskeletal robotic therapy and conventional exercise therapy in incomplete spinal cord injury (SCI). The main questions it aims to answer are: - Is exoskeletal robotic therapy effective in improving functional ambulation in SCI? - Is exoskeletal robotic therapy effective in enhancing Activities of Daily Living in SCI? Participants treated with either: - Exoskeletal robotic therapy along with conventional exercise therapy, or - Only conventional exercise therapy.
The goal of this clinical trial is to compare the effects of balance therapy with an overground gait trainer in incomplete spinal cord injury (SCI). The main questions it aims to answer are: - Is balance therapy with an overground gait trainer effective in improving functional ambulation in SCI? - Is balance therapy with an overground gait trainer effective in enhancing Activities of Daily Living in SCI? Participants treated with either: • Overground gait trainer along with conventional exercise therapy