View clinical trials related to Phantom Limb.
Filter by:Investigators will evaluate preamputation cryoanalgesia on pain, mobility, opioid use and general physical and emotional disability using a pilot randomized trial design, to explore the amount and variability of improvement on those outcomes and to investigate the potentiality of conducting a future larger randomized controlled trial, which the investigators will assess quantitatively the benefits of cryoanalgesia.
The goal of this clinical trial is to investigate the effectiveness of two rehabilitation programs for individuals who have undergone amputations and are experiencing phantom limb pain. The main question it aims to answer is: - In individuals who have undergone amputations and are experiencing phantom limb pain, what is the effectiveness of a progressive rehabilitation program compared to a treatment program consisting of transcutaneous electrical nerve stimulation and cranial electrical stimulation on reducing pain intensity and pain interference? A total of 208 participants will be randomized into two groups: progressive rehabilitation program and stimulation devices. The progressive rehabilitation program includes pain science education, sensory training, and left/right judgements, imagined movements and mirror therapy. The treatment program for the group receiving the stimulation devices includes transcutaneous electrical nerve stimulation and cranial electrical stimulation. Both interventions will be delivered via eight, up to 1-hour telehealth sessions. Outcome measures will be assessed at baseline and weeks 12, 24 and 52.
Nearly 60-85% of Veterans with amputations experience pain at the location of the amputated limb called phantom limb pain (PLP). PLP is a major problem and can have a profound impact on Veteran's daily function and ability to fully participate in life. Although several rehabilitation interventions are promising, advances in novel rehabilitation interventions are limited. The objective of this project is to refine a mobile app for graded motor imagery in 12 Veterans with amputations and test the mobile app with 36 Veterans with amputations. For this pilot project, the investigators will measure the preliminary feasibility and acceptability of the intervention. Knowledge from this project will provide evidence to guide future larger studies of this graded motor imagery intervention. Developing novel strategies for chronic pain in this population will positively impact quality of life for Veterans with amputations.
During breast surgery, sensory nerves are cut which may lead to reduced sensation and pain. Surgical reinnervation techniques have been developed with the aim of improving postoperative sensation by preserving the nerves and connecting them to the nipple and areola. The investigators aim to compare postoperative sensation and patient reported outcomes in patients undergoing reinnervation versus those not undergoing reinnervation to determine if there is a difference. The investigators will investigate this in patients undergoing gender-affirming mastectomy, implant-based breast reconstruction and autologous breast reconstruction. The investigators will use various tools that measure sensation quantitatively.
Phantom limb pain (PLP) is a significant and pervasive issue among upper limb amputees, severely impacting their quality of life. The literature delineating prevalence of upper versus lower limb amputations is limited, but the prevalence of total amputations in the United States is estimated to reach 3 million individuals by 2050, with approximately 185,000 new cases annually. PLP affects 60-68% of these patients, leading to heightened levels of anxiety, depression, and reduced overall well-being.
Over the last years a rising medical need for treatment of chronic pain was identified. Based on previous findings indicating the pain modulating effects of cannabinoids in chronic pain disorders, this clinical trial investigates the long term efficacy and tolerability of the THC-focused nano endocannabinoid system modulator AP707 in patients with chronic pain disorders due to central neuropathy of any genesis. Patients receive AP707 or placebo over the course of 14 weeks as an add-on to the standard of care. Changes in pain intensity, quality of life and sleep and others measures are monitored through different scales to assess the efficacy of AP707 in patients with chronic pain due to central neuropathy of any genesis.
Over the last years a rising medical need for treatment of chronic pain was identified. Based on previous findings indicating the pain modulating effects of cannabinoids in chronic pain disorders, this clinical trial investigates the efficacy and tolerability of the THC-focused nano endocannabinoid system modulator AP707 in patients with chronic pain disorders due to central neuropathy of any genesis. Patients receive AP707 or placebo over the course of 14 weeks as an add-on to the standard of care. Changes in pain intensity, quality of life and sleep and others measures are monitored through different scales to assess the efficacy of AP707 in patients with chronic pain due to central neuropathy of any genesis.
When a limb is severed, pain perceived in the part of the body that no longer exists often develops and is called "phantom limb" pain. Unfortunately, phantom pain goes away in only 16% of afflicted individuals, and there is currently no reliable definitive treatment. The exact reason that phantom limb pain occurs is unclear, but when a nerve is cut-as happens with an amputation-changes occur in the brain and spinal cord that actually increase with worsening phantom pain. These abnormal changes may often be corrected by putting local anesthetic-called a "nerve block"-on the injured nerve, effectively keeping any "bad signals" from reaching the brain with a simultaneous resolution of the phantom limb pain. However, when the nerve block resolves after a few hours, the phantom pain returns. But, this demonstrates that the brain abnormalities-and phantom pain-that occur with an amputation are not necessarily fixed, and may be dependent upon the "bad" signals being sent from the injured nerve(s), suggesting that a very long peripheral nerve block-lasting many months rather than hours-may permanently reverse the abnormal changes in the brain, and provide definitive relief from phantom pain. A prolonged nerve block lasting a few months may be provided by freezing the nerve using a process called "cryoneurolysis". The ultimate objective of the proposed research study is to determine if cryoanalgesia is an effective treatment for intractable post-amputation phantom limb pain. The proposed pilot study will include subjects with an existing above-knee amputation who experience intractable daily phantom limb pain. A single ultrasound-guided treatment of cryoneurolysis (or sham block-determined randomly like a flip of a coin) will be applied to the major nerves of the thigh. Although not required, each subject may return 4-6 months later for the alternative treatment (if the first treatment is sham, then the second treatment would be cryoneurolysis) so that all participants have the option of receiving the active treatment. Subjects will be followed for a total of 12 months with data collected by telephone.
The study will investigate the application of a non-pharmacological operant conditioning approach to reduce phantom limb pain (PLP). PLP afflicts 60-90% people who have lost a limb. It can last for years and lead to drug dependence, job loss, and poor quality of life. Current non-pharmacological interventions are encouraging but limited, and their efficacy remains unclear. Limb amputation is known to lead to abnormal sensorimotor reorganization in the brain. Multiple studies have shown that PLP severity is correlated with the extent of this reorganization. The current study will train participants via realtime feedback of brain responses to promote more normal sensorimotor response, with the goal to reduce phantom limb pain.
Paired associative stimulation (PAS) is a non-invasive brain stimulation protocol, where two stimuli (a peripheral and a cortical one, the latter delivered with transcranial magnetic stimulation - TMS) are repeatedly associated to enhance plasticity in the brain. In the present study, a new cross-modal, visuo-motor PAS protocol - called "mirror-PAS"- will be tested as a possible non-invasive brain stimulation treatment in neurological rehabilitation to promote motor recovery and pain reduction. Participants will perform the standard PAS targeting the motor system and the recently developed mirror-PAS in two separate sessions. The investigators will compare the possible effect of the protocols in terms of neurophysiological and behavioral outcomes to identify the optimal PAS method to enhance plasticity and promote sensory-motor function.