View clinical trials related to Phantom Limb.
Filter by:The objective of this study is to evaluate efficacy of varied medical and procedural therapies used to treat pain after surgical amputation of a limb. The primary outcome will be assessment of pain severity at rest and with movement as measured by pain scores on Numerical Rating Scale (NRS) 0 to 10, where 0 is not pain and 10 is the worst pain possible, taken on post-operative day 1, day 7, 30 days, 90 days, 6 months, and 1 year (+/- 3 days at each time point).
After amputation of an arm or leg, up to 90% of subjects experience a "phantom limb", a phenomenon characterized by persistent feelings of the missing limb. Many subjects with a phantom limb experience intense pain in the missing extremity that is often poorly responsive to medications or other interventions. The proposed work will contrast the efficacy of two virtual reality treatments for phantom limb pain: a 'Distractor' and an Active VR treatment. In the Distractor treatment, participants are engaged in a visually immersive virtual reality experience that does not require leg movements (REAL i-Series® immersive VR experience). In the Active VR treatment, subjects play a series of VR games using the virtual rendering of both legs.
This double-blind placebo-controlled pilot study seeks to investigate whether psilocybin can be safely administered to people with chronic phantom limb pain (PLP) in a supportive setting with close follow-up, and its effects on pain symptoms and other moods, attitudes, and behaviors. The investigators' primary hypotheses are that psilocybin is safe to administer in people with PLP and that it will reduce scores on measures of pain. The investigators will also assess a number of secondary measures related to the behavioral and neural responses to pain after psilocybin treatment.
The investigators have designed a pragmatic trial of home-based transcranial direct current stimulation (tDCS) for phantom limb pain (PLP), the PLP-EVEREST trial (PLP-EffectiVEness pRagmatic Stimulation Trial) to test a portable device that would reach underrepresented populations and would validate this therapy in a more pragmatic setting. Subjects will be randomized to home-based tDCS of the primary motor cortex (M1) with somatosensory training or usual care only (including their current pharmacological treatments, physical therapy, and occupational therapy). The investigators will therefore test the effectiveness of home-based tDCS and somatosensory training in a real-world, home-based setting. The Investigator will compare patients randomized to this combined strategy vs. usual care alone (subjects from this group will be offered combined treatment at the end of the trial). The investigators hypothesize that the combined strategy will be associated with a significantly larger Cohen's d effect size (at least 1) compared to the control group.
This is a double-blind randomised controlled trial (RCT) which compares the effectiveness of three surgical techniques for alleviating residual limb pain (RLP), neuroma pain and phantom limb pain (PLP). The three surgical treatments are Targeted Muscles Reinnervation (TMR), Regenerative Peripheral Nerve Interface (RPNI), and an active control (neuroma excision and muscle burying). Patients will be follow-up for 4 years.
Phantom limb pain (PLP), defined as pain felt in the missing portion of the amputated limb following amputation, occurs in a significant percentage of patients who undergo limb amputation and it is among the most difficult chronic pain syndromes to treat. Its incidence has been reported to be around 70% though a local pilot study in 2013 reported the incidence to be 25%. The investigators aim to determine the actual incidence of PLP by conducting a single-centre prospective cohort study and identify risk factors associated with PLP. Subsequently, the investigators will use identified risk factors to develop and validate a risk prediction model for PLP after amputation surgery and design interventional studies aimed at reducing the development of PLP in high risk patients.
The treatment system consists of two light-weight MyMove bands and virtual-reality gear. Built-in software allows tracking of performance in real-time, with feedback to both the patient and treating personnel. MyMove is a wearable device that allows patients with loss of upper-limb function to operate computers, cellular phones, and similar devices. The technology is non-invasive and does not involve risk to the patient. MyMove+ is a Physical Medicine and Rehabilitation software intended for use in upper extremity and full-body conventional rehabilitation by: 1. Tracking motion and movement kinematics. 2. Guiding patients in the performance of physical exercises according to the treating practitioner's guidelines. MyMove+ software is not intended for use in diagnosis, treatment or decision-making, or as a stand-alone device.
The purpose of this study is to compare the effectiveness of innovative intervention of breathing controlled electrical stimulation (BreEStim) and conventional electrical stimulation (EStim) in management of neuropathic phantom limb pain in patients after limb amputation after multiple sessions of treatment.
The purpose of this study is to compare the effectiveness of innovative intervention of breathing controlled electrical stimulation (BreEStim) and conventional electrical stimulation (EStim) in management of neuropathic phantom limb pain in patients after limb amputation.
The purpose of this study is to compare the effectiveness of innovative intervention of breathing controlled electrical stimulation (BreEStim) and conventional electrical stimulation (EStim) in management of neuropathic phantom limb pain in patients after limb amputation.