Clinical Trials Logo

Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor clinical trials

View clinical trials related to Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor.

Filter by:

NCT ID: NCT03233204 Recruiting - Malignant Glioma Clinical Trials

Pediatric MATCH: Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes

Start date: July 24, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body and have come back or do not respond to treatment. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03210714 Not yet recruiting - Malignant Glioma Clinical Trials

Pediatric MATCH: Pan-FGFR Tyrosine Kinase Inhibitor JNJ-42756493 in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With FGFR Mutations

Start date: November 30, 2017
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well pan-FGFR tyrosine kinase inhibitor JNJ-42756493 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Pan-FGFR tyrosine kinase inhibitor JNJ-42756493 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02304458 Recruiting - Metastatic Melanoma Clinical Trials

Nivolumab With or Without Ipilimumab in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Sarcomas

Start date: February 2, 2015
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Monoclonal antibodies, such as nivolumab and ipilimumab, may block tumor growth in different ways by targeting certain cells. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.

NCT ID: NCT02116777 Recruiting - Clinical trials for Recurrent Adult Acute Lymphoblastic Leukemia

Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies

Start date: May 16, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.

NCT ID: NCT02011126 Withdrawn - Clinical trials for Recurrent Neuroblastoma

Imetelstat Sodium in Treating Younger Patients With Relapsed or Refractory Solid Tumors

Start date: June 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and how well imetelstat sodium works in treating younger patients with relapsed or refractory solid tumors. Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01795430 Withdrawn - Clinical trials for Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

Whole-Body Radiation Therapy, Systemic Chemotherapy, and High-Dose Chemotherapy Followed By Stem Cell Rescue in Treating Patients With Poor-Risk Ewing Sarcoma

Start date: July 2013
Phase: N/A
Study type: Interventional

This pilot clinical trial studies whole-body radiation therapy, systemic chemotherapy, and high-dose chemotherapy followed by stem cell rescue in treating patients with poor-risk Ewing sarcoma. Giving chemotherapy and radiation therapy before a peripheral blood stem cell or bone marrow transplant stops the growth of tumor cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is given to prepare the bone marrow for stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy

NCT ID: NCT01614795 Active, not recruiting - Clinical trials for Recurrent Osteosarcoma

Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma

Start date: June 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.

NCT ID: NCT01586104 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Intensity-Modulated Radiation Therapy in Treating Younger Patients With Lung Metastases

Start date: February 2011
Phase: N/A
Study type: Interventional

This pilot clinical trial studies intensity-modulated radiation therapy (IMRT) in treating younger patients with lung metastases. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue.

NCT ID: NCT01154816 Active, not recruiting - Clinical trials for Recurrent Childhood Acute Lymphoblastic Leukemia

Alisertib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Leukemia

Start date: February 2011
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects of and how well alisertib works in treating young patients with relapsed or refractory solid tumors or leukemia. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01154452 Completed - Clinical trials for Gastrointestinal Stromal Tumor

Vismodegib and Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced or Metastatic Sarcoma

Start date: June 2010
Phase: Phase 1/Phase 2
Study type: Interventional

This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.