Stroke Clinical Trial
Official title:
Behavioral and Neural Correlates of Melodic-Intonation-Therapy (MIT) and Speech-Repetition-Therapy (SRT) for Patients With Non-fluent Aphasia
We are doing this clinical trial in order to evaluate two different treatments for non-fluent aphasia: Melodic Intonation Therapy (MIT) and Speech Repetition Therapy (SRT). MIT uses a simple form of singing, while SRT uses intensive repetition of a set of words and phrases. We want to see which intensive form of treatment is more effective in leading to an improvement in speech output compared to a no-therapy control period, and whether either treatment can cause changes in brain activity during speaking and changes in brain structure. We will use a technique known as functional Magnetic Resonance Imaging (fMRI) to measure blood flow changes in the brain and structural MRI that assess brain anatomy and connections between brain regions. We will use fMRI to assess brain activity while a patient speaks, sings, and hums. We will assess changes in brain activity and in brain structure by comparing scans done prior to treatment to scans obtained after treatment and we will also examine changes between treatment groups. We will correlate changes in brain activity and brain structure with changes in language test scores.
One of the few accepted treatments for severe non-fluent aphasia is Melodic Intonation Therapy (MIT). Inspired by the common clinical observation that patients can actually sing the lyrics of a song better than they can speak the same words, MIT emphasizes the prosody of speech through the use of slow, pitched vocalization (singing), and has been shown to lead to significant improvements in propositional speech beyond the actual treatment period. It has been hypothesized that this effect is due to the gradual recruitment of right-hemispheric language regions for normal speech production, and this is further supported by our functional magnetic resonance imaging (fMRI) pilot data. Although the MIT-induced treatment effect has been shown in several small case series, it is not clear whether the effect is due to the intensity of the treatment or to the unique, components of MIT that are not found in other, non-intonation-based interventions. Thus, our overall aim is to test our hypothesis that MIT's rehabilitative effect is achieved by using its melodic and rhythmic elements to engage and/or unmask the predominantly right-hemispheric brain regions capable of supporting expressive language function. In order to test this hypothesis, we have developed an experimental design that includes the randomization of chronic stroke patients with persistent, moderate to severe non-fluent aphasia into three parallel groups receiving 1) 75 sessions of Melodic Intonation Therapy (approximately 15 weeks), 2) 75 sessions of an equally intensive, alternative verbal treatment method developed for this study (Speech Repetition Therapy), or 3) an equal period of No Therapy. All patients will undergo two pre-therapy and two post-therapy behavioral assessments in addition to the pre- and post-therapy fMRI studies and structural MRI studies examining the neural correlates of overtly spoken and sung words and phrases.This design allows us to 1) examine the efficacy of MIT over No Therapy, 2) examine the effects of elements specific to MIT (e.g., melodic intonation and rhythmic tapping) by comparing it to a control intervention (SRT) that is similar in structure and intensity of treatment, 3) compare post-therapy effects with pre-therapy baseline variations, and 4) examine post-treatment maintenance effects. Our primary speech outcome measure will be the number of Correct Information Units (CIU)/min produced during spontaneous speech. Secondary outcome measures include correctly named items on standard picture naming tests, timed automatic speech, and linguistically-based measures of phrase and sentence analysis. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|