Clinical Trials Logo

Respiratory Distress Syndrome clinical trials

View clinical trials related to Respiratory Distress Syndrome.

Filter by:

NCT ID: NCT04360096 Terminated - COVID Clinical Trials

Inhaled ZYESAMI™ (Aviptadil Acetate) for the Treatment of Severe COVID-19

AVICOVID-2
Start date: February 15, 2021
Phase: Phase 2/Phase 3
Study type: Interventional

Brief Summary: SARS-CoV-2 virus infection is known to cause Lung Injury that begins as dyspnea and exercise intolerance, but may rapidly progress to Critical COVID-19 with Respiratory Failure and the need for noninvasive or mechanical ventilation. Mortality rates as high as 80% have been reported among those who require mechanical ventilation, despite best available intensive care. Patients with severe COVID-19 by FDA definition who have not developed respiratory failure be treated with nebulized ZYESAMI™ (aviptadil acetate, a synthetic version of Vasoactive Intestinal Polypeptide (VIP)) 100 μg 3x daily plus Standard of Care vs. placebo + Standard of Care using an FDA 501(k) cleared mesh nebulizer. The primary outcome will be progression in severity of COVID-19 (i.e. critical OR severe progressing to critical) over 28 days. Secondary outcomes will include blood oxygenation as measured by pulse oximetry, dyspnea, exercise tolerance, and levels of TNFα IL-6 and other cytokines.

NCT ID: NCT04355364 Terminated - COVID-19 Clinical Trials

Efficacy and Safety of aerosolizedDornase Alfa Administration in Patients With COVID19 Induced ARDS (COVIDORNASE)

COVIDORNASE
Start date: April 21, 2020
Phase: Phase 3
Study type: Interventional

This study plans to learn more about the effects of Dornase Alfa in COVID19 (coronavirus disease of 2019) patients, the medical condition caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Dornase Alfa is a FDA-approved drug for the treatment of cystic fibrosis, which facilitates mucus clearance by cutting apart neutrophil-derived extracellular double-stranded DNA. This study intends to define the impact of aerosolized intra-tracheal Dornase Alfa administration on the severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19 patients. This drug might make lung mucus thinner and looser, promoting improved clearance of secretions and reduce extracellular double-stranded DNA-induced hyperinflammation in alveoli, preventing further damage to the lungs. The study will recruit mechanically ventilated patients hospitalized in ICU who have been diagnosed with COVID-19 and meet ARDS criteria. It is a prospective, randomized, controlled, multicentric, open-label clinical trial. The goal is to recruit 100 patients.

NCT ID: NCT04347941 Terminated - COVID19 Clinical Trials

Awake Prone Positioning to Reduce Invasive VEntilation in COVID-19 Induced Acute Respiratory failurE

APPROVE-CARE
Start date: July 11, 2020
Phase: N/A
Study type: Interventional

Prone positioning (PP) is an effective first-line intervention to treat moderate-severe acute respiratory distress syndrome (ARDS) patients receiving invasive mechanical ventilation, as it improves gas exchanges and lowers mortality.The use of PP in awake self-ventilating patients with (e.g. COVID-19 induced) ARDS could improve gas exchange and reduce the need for invasive mechanical ventilation, but has not been studied outside of case series.The investigators will conduct a randomized controlled study of patients with COVID-19 induced respiratory failure to determine if prone positioning reduces the need for mechanical ventilation compared to standard management.

NCT ID: NCT04335786 Terminated - COVID-19 Clinical Trials

Valsartan for Prevention of Acute Respiratory Distress Syndrome in Hospitalized Patients With SARS-COV-2 (COVID-19) Infection Disease

Start date: April 17, 2020
Phase: Phase 4
Study type: Interventional

Rationale: The current SARS-CoV-2 pandemic has a high burden of morbidity and mortality due to development of the so-called acute respiratory distress syndrome (ARDS). The renin-angiotensin-system (RAS) plays an important role in the development of ARDS. ACE2 is one of the enzymes involved in the RAS cascade. Virus spike protein binds to ACE2 to form a complex suitable for cellular internalization. The downregulation of ACE2 results in the excessive accumulation of angiotensin II, and it has been demonstrated that the stimulation of the angiotensin II type 1a receptor (AT1R) increases pulmonary vascular permeability, explaining the increased lung pathology when activity of ACE2 is decreased. Currently available AT1R blockers (ARBs) such as valsartan, have the potential to block this pathological process mediated by angiotensin II. There are presently two complementary mechanisms suggested: 1) ARBs block the excessive angiotensin-mediated AT1R activation, and 2) they upregulate ACE2, which reduces angiotensin II concentrations and increases the production of the protective vasodilator angiotensin 1-7. In light of the above, ARBs may prevent the development of ARDS and avert morbidity (admission to intensive care unit (ICU) and mechanical ventilation) and mortality. Objective: To investigate the effect of the ARB valsartan in comparison to placebo on the occurrence of one of the following items, within 14 days of randomization:1) ICU admission; 2) Mechanical ventilation; 3) Death. Study design: A double-blind, placebo-controlled 1:1 randomized clinical trial Study population: Adult hospitalized SARS-CoV-2-infected patients (n=651). Intervention: The active-treatment arm will receive valsartan in a dosage titrated to blood pressure up to a maximum of 160mg b.i.d. and the placebo arm will receive a matching placebo also titrated to blood pressure. Treatment duration will be 14 days or up to hospital discharge < 14 days or occurrence of the primary endpoint if < 14 days. Main study endpoint: The primary study endpoint is the occurrence within 14 days of randomization of either: 1) ICU admission; 2) Mechanical ventilation; 3) Death.

NCT ID: NCT04327505 Terminated - COVID-19 Clinical Trials

Safety and Efficacy of Hyperbaric Oxygen for ARDS in Patients With COVID-19

COVID-19-HBO
Start date: June 3, 2020
Phase: Phase 2/Phase 3
Study type: Interventional

COVID-19 may cause severe pneumonitis that require ventilatory support in some patients, the ICU mortality is as high as 62%. Hospitals do not have enough ICU beds to handle the demand and to date there is no effective cure. We explore a treatment administered in a randomized clinical trial that could prevent ICU admission and reduce mortality. The overall hypothesis to be evaluated is that HBO reduce mortality, increase hypoxia tolerance and prevent organ failure in patients with COVID19 pneumonitis by attenuating the inflammatory response.

NCT ID: NCT04264156 Terminated - Clinical trials for Respiratory Distress Syndrome, Newborn

A Safety and Efficacy Study of Lucinactant for Inhalation in Preterm Neonates 26 to 32 Weeks Gestational Age

Start date: April 18, 2020
Phase: Phase 2
Study type: Interventional

This study is to evaluate the safety and efficacy of lucinactant for inhalation in conjunction with nCPAP, in comparison to nCPAP alone, in preterm neonates with RDS, as assessed by the incidence of and time to respiratory failure and/or death due to RDS in the first 72 hours and 28 days of life. Half of the subjects will receive lucinactant for inhalation and half will receive standard of care (nCPAP alone).

NCT ID: NCT04064684 Terminated - Clinical trials for Acute Respiratory Distress Syndrome

Inhaled Steroids for the Treatment of Early Pediatric Acute Respiratory Distress Syndrome

Start date: February 4, 2020
Phase: Phase 2
Study type: Interventional

The purpose of this study is to show that inhaled steroids in patient with PARDS can decrease the days on mechanical ventilator measured by ventilator-free days,to improve the oxygenation index (OI) or oxygenation saturation index (OSI) in patients receiving inhaled steroids and to show the relevance and feasibility of a larger study by assessing the hypothesis in a small cohort of patients. Patient will be treated for a maximum of 10 days. Secondary objectives are to reduce the length of stay (LOS) in the pediatric intensive care unit (PICU) and hospital admissions; to show less inflammation in the patients receiving inhaled steroids by measuring inflammatory markers from tracheal aspirates like Interleukin (IL6, IL8, tumor necrosis factor (TNF) α, matrix metalloproteinase8 (MMP8) and matrix metalloproteinase9 (MMP9). Lastly, to show that inhaled steroids can improve residual lung disease evaluated by Pulmonary Function Test (PFTs) and Impulse Oscillometry (IOS).

NCT ID: NCT04023305 Terminated - Clinical trials for Acute Respiratory Distress Syndrome

Sevoflurane PharmacokInetics in ARDS

SPIDERMAN
Start date: February 23, 2020
Phase: N/A
Study type: Interventional

The main objective of this study is to compare the pharmacokinetic models of sevoflurane-induced sedation during ARDS depending on the lung imaging phenotype (focal vs nonfocal phenotypes) The authors hypothesized that sevoflurane used for inhaled sedation could have distinct pharmacokinetic profiles depending on lung imaging phenotypes (focal vs nonfocal) during ARDS in ICU patients.

NCT ID: NCT03955887 Terminated - Lung Diseases Clinical Trials

Mitochondrial Dysfunction of Alveolar and Circulating Immune Cells During Acute Respiratory Distress Syndrome: Impact of Infectious Aggression and Alveolar Stretching as a Result of Mechanical Ventilation.

PNEUMOCHONDRIE
Start date: June 11, 2019
Phase:
Study type: Observational

Sepsis leads to a deregulated host response that can lead to organ failure. During sepsis, experimental and clinical data suggest the occurrence of mitochondrial dysfunctions, particularly in circulating muscle and monocytes, which may contribute to organ failure and death. Lower respiratory infection is the leading cause of death from infectious causes. Mechanical ventilation (MV) is required in 20% of cases of bacterial pneumopathy with Streptococcus pneumoniae (S.p.) , with mortality reaching 50%. There are then frequently criteria for acute respiratory distress syndrome (ARDS), combining bilateral lung involvement and marked hypoxemia. Cyclic stretching of lung cells induced by MV causes sterile inflammation and tissue damage (i.e. ventilator-induced lung injury [VILI]), which can cause cellular dysfunction that alter the immune response, particularly during ARDS. This is why the application of a so-called protective MV is then required. However, this does not prevent about one-third of patients from showing signs of alveolar overdistension, as evidenced by an increase in motor pressure (MP) (MP≥ 15 cmH2O), associated with an increase in mortality. The deleterious effects of MV could be explained by the occurrence of mitochondrial abnormalities. Indeed, the cyclic stretching of lung cells leads to dysfunction in the respiratory chain and the production of free oxygen radicals (FOS), altering membrane permeability. These phenomena could promote VILI, facilitate the translocation of bacteria from the lung to the systemic compartment and lead to alterations in immune response. In our model of S.p. pneumopathy in rabbits, animals on MV develop more severe lung disorders (lack of pulmonary clearance of bacteria, bacterial translocation in the blood, excess mortality), compared to animals on spontaneous ventilation (SV). Intracellular pulmonary mitochondrial DNA (mtDNA) concentrations, a reflection of the mitochondrial pool, are significantly decreased in ventilated rabbits compared to SV rabbits and in infected rabbits compared to uninfected rabbits. At the same time, the mitochondrial content of circulating cells decreased early (H8) in all infected rabbits, but was only restored in rabbits in SV, those who survived pneumonia (Blot et al, poster ECCMID 2015, submitted article). These data suggest an alteration in the mechanisms that restore mitochondrial homeostasis (mitochondrial biogenesis and mitophagy) during the dual infection/MV agression, which may explain the observed excess mortality. Other work by our team illustrates the importance of these phenomena by showing in a mouse model of polymicrobial infection that inhibition of mitophagia in macrophages promotes survival (Patoli et al, in preparation). Human data on this subject are non-existent. The phenomena of mitochondrial dysfunction nevertheless deserve to be explored in humans during the combined MV/pneumopathy aggression in order to understand its possible impact on the effectiveness of the host's immune response. In a personalized medicine approach, these data would open up prospects for targeted therapies, capable of activating mitochondrial biogenesis and/or modulating mitophagia, to prevent organ dysfunction and mortality during severe CALs treated with antibiotic therapy.

NCT ID: NCT03918603 Terminated - ARDS, Human Clinical Trials

Decrease of Lesions Induced by Mechanical Ventilation During ARDS

ECMO-VILI
Start date: July 3, 2019
Phase: N/A
Study type: Interventional

Modification of mechanically ventilated lesions by an ultra-protective multimodal strategy compared to a protective strategy in patients with veno-venous ECMO for severe ARDS.