Clinical Trials Logo

Respiratory Distress Syndrome clinical trials

View clinical trials related to Respiratory Distress Syndrome.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06367881 Recruiting - Preterm Birth Clinical Trials

Assessment Of Dose-Dependent Immunomodulatory Effect Of Alveofact With or Without Steroisd In Neonatal RDS

Start date: August 18, 2022
Phase: Phase 1
Study type: Interventional

An Exploratory Randomized double-arm controlled trial to evaluate the immunomodulatory effect of low versus high dose of Alveofact with or without Budesonide.

NCT ID: NCT06356909 Recruiting - Clinical trials for Neonatal Respiratory Distress

Study of PREMEdication Before Laryngoscopy in Neonates in France

SUPREMEneo
Start date: March 11, 2024
Phase:
Study type: Observational

This study is a national prospective survey on practices of premedication before laryngoscopy in neonates. The survey will evaluate adequation to the French best practice guidelines to improve their dissemination and to identify current practices of premedication before laryngoscopy in neonates in French units (agents, dosing, efficacy, safety)

NCT ID: NCT06321497 Recruiting - ARDS, Human Clinical Trials

Extracorporeal Carbon Dioxide Removal Using PrismaLung in Reducing Ventilator Induced Lung Injury

Start date: February 5, 2024
Phase:
Study type: Observational

Lung protective ventilation with low tidal volumes and low driving pressure are known to reduce mortality in mechanically ventilated patients with acute respiratory failure. This reduction in mortality is known be due to reduction of ventilator induced lung injury that occurs due to high tidal volumes and high driving pressure. When receiving such mechanical ventilation, some patients develop hypercapnia and associated hypercapnic acidosis. Such patients have an increased risk of mortality. While the exact reasons for such increase in mortality is not known, it is recommended to minimise hypercapnia and hypercapnic acidosis during lung protective ventilation. Minimally invasive extracorporeal carbon dioxide removal (ECCO2R) devices are shown to reduce hypercapnia and hypercapnic acidosis. There are several devices that are currently available in the current clinical practice. However, the effect of these devices on reduction in ventilator induced lung injury is not clearly demonstrated. This study aims to assess the use of an ECCO2R device called Prismalung in reducing ventilator induced lung injury. PrismaLung is currently used in our intensive care unit. This assessment is done by measuring interleukins in bronchoalveolar lavage fluid and blood interleukin levels as well as clinical assessment including the reduction of driving pressure.

NCT ID: NCT06310629 Recruiting - Respiratory Failure Clinical Trials

Oxygenation Efficacy of "Intrinseque Health" Non-Rebreathing Mask ("IHNRM")

Start date: February 22, 2024
Phase: N/A
Study type: Interventional

Based on early bench-testing data and subsequent clinical case studies in the U.S., "Intrinseque Health" non-rebreathing mask (IHNRM) has delivered virtual elimination of air entrainment and preferential delivery of all available oxygen first into the alveolar spaces by sequential opening of valves in its controller manifold, even at oxygen flow as low as 10 LPM, patient can attain high alveolar oxygen concentration of 75% or more-far higher than attainable with face mask or nasal cannula. Numerous intubated patients emerging from the operating room require intensive critical care specialist supervision in order to transition to the regular care. This would enable higher patient turnover and more efficient utilization of hospital resources, if patient can be transited to the regular care earlier by using a device that supports high oxygenation. This will enable a faster, safe and smooth extubation in critical care, and earlier discharge from intensive care ward. This study is anticipated to take only around 2.5 hour per patient to complete. Patients meeting the inclusion and exclusion criteria of this study are placed on IHNRM and monitored until steady state of SpO2 of 95% or higher on 7-10 LPM has been maintained for at least 2 hours, when they can be discharged from the post-anesthesia care unit (PACU) to the regular care ward. The study is the parallel design study. 60 patients will be randomly selected to use the IHNRM, and 30 subjects will be placed on HFNC. Blood oxygen concentration (SpO2), respiratory rate, end tidal CO2 concentration (EtCO2), and vital sign will be recorded in the study. The endpoint of the study is to compare the effect after using between "IHNRM" and HFNC.

NCT ID: NCT06295484 Recruiting - Preterm Birth Clinical Trials

Effect of Nasal CPAP Versus NIPPV On Diaphragm Electrical Activity (Edi) In VLBW Preterm Infants

Start date: August 21, 2021
Phase: N/A
Study type: Interventional

Background: In premature babies, many organ systems are not fully grown and developed, including the lungs and respiratory muscles, so they will need breathing support to help them to breathe by preventing their tiny air sacs to collapse. This support commonly done by CPAP and Non-Invasive Positive Pressure Ventilation (NIPPV) therapy by giving some pressure and oxygen to their lungs through an interface placed on their noses. Both (CPAP and NIPPV) can be used as a support modality for respiratory distress syndrome, apnea of prematurity, and providing breathing support after extubation from the full mechanical breathing support. The CPAP supports the baby's immature lungs by delivering constant pressure to keep their lungs and breathing well supported. Whereas the NIPPV will use constant pressure in the background (similar to CPAP), and on top, it will give extra intermittent puffs at regular intervals to support the baby's breathing. The NIPPV is the most common choice by the clinicians when the traditional CPAP is no longer effective, to avoid the full mechanical breathing support and to protect the developing lungs. Studies suggested that NIPPV is better than the traditional CPAP in reducing the need of the baby to need full mechanical breathing support. This might be because the investigators tend to use lower pressures with CPAP (5-8 cmH2O) compared to relatively higher pressures with NIPPV. More recently, clinicians showed the safety of using equivalent higher CPAP pressures (>9 cmH2O) to what the investigators use in the NIPPV in preterm babies. One way to measure the support that the investigators are giving to the patient with the different devices is to measure the diaphragm activity, which the investigators call the Edi signal, using a special feeding catheter and a specific machine to measure it. The catheter is placed and used as a routine feeding tube but has sensors at the end to measure this Edi signal. One opening of the tube will be connected to a computer to record the Edi signals. The other opening of the tube will be used for feeding.

NCT ID: NCT06286306 Recruiting - Clinical trials for Hypoxemic Without Hypercapnia Acute Respiratory Failure

Pronostic Value of Fluid Responsiveness Evaluated by Inferior Vena Cava Collapsibility Index in Patients Admitted in ICU With Acute Respiratory Failure

PRIVACY
Start date: February 24, 2023
Phase:
Study type: Observational

Acute respiratory failure represents a frequent cause of admission to intensive care units (ICUs). In the absence of tailored interventions, it poses an imminent threat to patients' lives. Most patients admitted in ICU undergo fluid expansion to enhance oxygen delivery and preserve cellular function. This practice is grounded in the concept of " preload responsiveness ". However, the accrual of positive fluid balance resulting from fluid administration is now acknowledged as an autonomous risk factor for mortality. Consequently, preload unresponsiveness assumes a pathological character, potentially indicative of fluid overload or right ventricular dysfunction, both deleterious conditions linked to unfavorable outcomes. Maintaining patients in a preload-responsive state may be interesting to limit fluid expansion and the need of invasive mechanical ventilation. The objective of this prospective observational study is to evaluate the prognostic significance of preload responsiveness in patients admitted to the ICU with hypoxemic, non-hypercapnic respiratory failure. - Main objective: To evaluate the association between fluid responsiveness, assessed by the inferior vena cava collapsibility index (cIVC) with trans-thoracic echocardiography within the initial 48 hours post-ICU admission, and mortality or the need for invasive mechanical ventilation by day 28 in patients admitted to the ICU for hypoxemic, non-hypercapnic acute respiratory failure. - Secondary objectives: To evaluate the association between fluid responsiveness and mortality at day 28 and day 90, the need of invasive mechanical ventilation, and the number of days free from organ support (vasopressors, mechanical ventilation and renal replacement therapy) by day 28. Upon receipt of both oral and written information, patients will provide non-objection to participate in the study. This prospective single-center study has obtained approval from the Regional Ethics Committee of Ile de France III approval (No. 2022-A02813-40).

NCT ID: NCT06280872 Recruiting - Sepsis Clinical Trials

Physiologically Based Cord Clamping To Improve Neonatal Outcomes In Moderate And Late Preterm Newborns

PhyCordPrem
Start date: February 19, 2024
Phase: N/A
Study type: Interventional

Before birth, the baby's lungs are filled with fluid and babies do not use the lungs to breathe, as the oxygen comes from the placenta. As delivery approaches, the lungs begin to absorb the fluid. After vaginal delivery, the umbilical cord is clamped and cut after a delay that allows some of the blood in the umbilical cord and placenta to flow back into the baby. Meanwhile, as the baby breathes for the first time, the lungs fill with air and more fluid is pushed out. However, it does not always work out that way. A baby born prematurely may have breathing problems because of extra fluid staying in the lungs related to the immaturity of the lung structure. Thus, the baby must breathe quicker and harder to get enough oxygen enter into the lungs. The newborn is separated from the mother to provide emergency respiratory support. Although the baby is usually getting better within one or two days, the treatment requires close monitoring, breathing help, and nutritional help as the baby is too tired to suck and swallow milk. Sometimes, the baby cannot recover well and show greater trouble breathing needing intensive care. This further separates the mother and her baby. A possible mean to help the baby to adapt better after a premature birth while staying close to the mother is to delay cord clamping when efficient breathing is established, either spontaneously or after receiving breathing help at birth. In this study, we intend to test this procedure in moderate or late preterm infants and see whether the technique helps the baby to better adapt after birth and to better initiate a deep bond with the mother.

NCT ID: NCT06257784 Recruiting - Clinical trials for Acute Respiratory Failure

Single Breath Counting Test for Acute Respiratory Failure in Emergency Department

STARED
Start date: March 30, 2022
Phase:
Study type: Observational

The purpose of the study is to determine whether SBCT is a useful tool for diagnosing the main form of failure respiratory acute and to define the SBCT limit associated with insufficiency respiratory in this population, the requirement for NIV or invasive ventilation. Furthermore, the correlation with the most common scores and indices used in the emergency room will be studied, such as: HACOR, MEW, REMS SCORE, ROS, CURB-65, qSOFA, SEVERITY INDEX OF PNEUMONIA, GWTG HF, LUNG ULTRASOUND SCORE, SINGLE BREATH COUNT

NCT ID: NCT06226402 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Effect of Nebulized and Intravenous Hypertonic Saline 3% on the Management of Patients With Acute Respiratory Distress Syndrome

Start date: September 1, 2023
Phase: N/A
Study type: Interventional

The aim of our study is to compare between the effect of nebulized and intravenous injection of hypertonic saline 3% on the outcome of patients with acute respiratory distress syndrome.

NCT ID: NCT06215209 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Effect of PP in Patients With Ultra-low VT

Start date: February 20, 2024
Phase:
Study type: Observational

Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome with similar clinicopathological feathers caused by different etiologies. Respiratory supportive strategies is the main ARDS management, and the guidelines recommend low tidal volume to improve clinical outcomes. To be note, overdistension can still occur even if using a tidal volume as low as 6 ml/kg, given the heterogeneous nature of the syndrome. Therefore, adjusting tidal volume level to less than 6ml/kg may reduce ventilator-induced lung injury (VILI) and thus improve outcomes, especially in patients with severe lung injury. Prone position is also an important management in severe ARDS. Prone position can improve ventilation-perfusion (V/Q) matching and reduce the risk of VILI by recruiting dorsal collapsed alveoli. Meanwhile, prone position has also been shown to improve hemodynamics. Recent studies have showed that prone position did not reduce duration of venovenous extracorporeal membrane oxygenation (VV-ECMO) and 90-day mortality in patients with ARDS who receive VV-ECMO with ultra-low tidal volume ventilation. Therefore, the effect of PP on ventilation and lung blood flow in ARDS patients treated with VV-ECMO wiht ultra-low tidal volume ventilation remains unclear.