Clinical Trials Logo

Respiratory Distress Syndrome clinical trials

View clinical trials related to Respiratory Distress Syndrome.

Filter by:

NCT ID: NCT06413472 Active, not recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Comparing Formulations of Mechanical Power Using Geometric Methods

Start date: January 1, 2024
Phase:
Study type: Observational

We aimed to compare different formulations of mechanical power using geometric methods at varying inspiratory rise and pause times.

NCT ID: NCT06402318 Recruiting - COVID-19 Clinical Trials

Passive Detection- SARS-CoV-2 A&M Breathalyzer (PROTECT Kiosk) for Operational Medicine

Start date: December 27, 2023
Phase:
Study type: Observational

The primary objective of this effort will be to optimize and operationalize innovative passive surveillance systems and in parallel, the effort will identify, evaluate, and transition groundbreaking new technologies in diagnostics for operationalization. To meet the objective and execute the deliverables for this program of effort, the A&M Breathalyzer PROTECT Kiosk will be tested, modified and validated at Brooke Army Medical Center (BAMC). The collaborative efforts between the PI, Dr. Michael Morris at BAMC and Co-Investigator Dr. Tony Yuan at USU- Center for Biotechnology (4D Bio3) will assess the passive detection technology and provide a capability survey of use-case scenarios for different operational settings. Goals: 1. Optimization and operationalize the A&M Breathalyzer PROTECT Kiosk, portable mass spectrometer (MS) Detector for Deployment in Military Operational Medicine Environments. The Breathalyzer will be deployed to BAMC to test its detection capabilities of COVID-19 among symptomatic and asymptomatic COVID-19 carrier vs. those not infected compared to gold standard RT-PCR. 2. Evaluate the passive sensing, breath capture system, built within the A&M Breathalyzer PROTECT Kiosk. The conversion of the active breath capture system, currently requires a straw that the subject breaths into, where then a series of sensors built in the Breathalyzer would automatically sample the exhaled breath within proximity for recent COVID-19 exposure. This task would conclude with a set of sensors and sensor inputs that would be analyzed by the Atomic AI platform built in the device. Field testing at BAMC is planned to determine the level of detection and discrimination for sensor combinations to SARS-CoV2 components and biomarkers detected. This testing would update the Atomic AI algorithm, within the device, to understand the accuracy of positive detection and the resulting sensitivities.

NCT ID: NCT06394583 Not yet recruiting - Clinical trials for Respiratory Distress Syndrome, Newborn

LUS AT BIRTH IN INFANTS BORN BEFORE 26 WEEKS

MINI-LUS
Start date: June 30, 2024
Phase:
Study type: Observational [Patient Registry]

All infants born before 26 weeks born in a hospital included in the registry will receive a LU at birth, before the first dose of surfactant. We will register as well the length of IMV, NIV or the need of IMV in the whole sample.

NCT ID: NCT06387823 Recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Efficacy and Safety of Sivelestat Sodium and Dexamethasone in the Treatment of ARDS

STAR
Start date: April 15, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to evaluate the efficacy and safety of Sivelestat sodium and dexamethasone in the treatment of patients with moderate to severe ARDS. The main questions it aims to answer are: - Is Sivelestat sodium more effective in the treatment of patients with moderate to severe ARDS compared with placebo? - Is dexamethasone more effective in the treatment of patients with moderate to severe ARDS compared with placebo? Participants will receive Sivelestat sodium, dexamethasone or placebo. Researchers will compare the efficacy and safety of Sivelestat sodium, dexamethasone and placebo.

NCT ID: NCT06372951 Not yet recruiting - Clinical trials for Neonatal Respiratory Distress

Lung Ultrasound in Neonatal Intensive Care Units

Start date: May 1, 2024
Phase:
Study type: Observational

Identification of lung diseases causing neonatal respiratory distress by lung ultrasound as a tool that can replace x-ray .

NCT ID: NCT06369584 Not yet recruiting - Clinical trials for Extracorporeal Membrane Oxygenation

Prone Position During ECMO in Pediatric Patients With Severe ARDS

PEPAD
Start date: May 1, 2024
Phase: N/A
Study type: Interventional

In 2023, the second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) updated the diagnostic and management guidelines for Pediatric Acute Respiratory Distress Syndrome (PARDS). The guidelines do not provide sufficient evidence-based recommendations on whether prone positioning ventilation is necessary for severe PARDS patients. However, the effectiveness of Extracorporeal Membrane Oxygenation (ECMO) in treating severe PARDS has been fluctuating around 70% according to recent data from Extracorporeal Life Support Organization (ELSO). In 2018, the Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE) study group conducted a retrospective analysis and concluded that ECMO does not significantly improve survival rates for severe PARDS. However, this retrospective study mainly focused on data from North America, with significant variations in annual ECMO support cases among different centers, which may introduce bias. With advancements in ECMO technology and materials, ECMO has become safer and easier to operate. In recent years, pediatric ECMO support technology has rapidly grown in mainland China and is increasingly being widely used domestically to rescue more children promptly. ECMO can also serve as a salvage measure for severely ARDS children who have failed conventional mechanical ventilation treatment. When optimizing ventilator parameters (titrating positive end expiratory pressure (PEEP) levels, neuromuscular blockers, prone positioning), strict fluid management alone cannot maintain satisfactory oxygenation (P/F<80mmHg or Oxygen Index (OI) >40 for over 4 hours or OI >20 for over 24 hours), initiating ECMO can achieve lung-protective ventilation strategies with ultra-low tidal volumes to minimize ventilator-associated lung injury.

NCT ID: NCT06367881 Recruiting - Preterm Birth Clinical Trials

Assessment Of Dose-Dependent Immunomodulatory Effect Of Alveofact With or Without Steroisd In Neonatal RDS

Start date: August 18, 2022
Phase: Phase 1
Study type: Interventional

An Exploratory Randomized double-arm controlled trial to evaluate the immunomodulatory effect of low versus high dose of Alveofact with or without Budesonide.

NCT ID: NCT06357780 Not yet recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Closed-loop syncHronization vErsuS convenTional Synchronization in sPontaneously Breathing Adult Nonivasive ventilationPatients

CHESTSPAN
Start date: April 8, 2024
Phase: N/A
Study type: Interventional

The study is a multicentric prospective randomised cross-over study. It evaluates the compatibility of patients with the device without altering the routine treatment applied. During this evaluation, either the clinician-adjusted values on the device or the standard pre-set values are used to obtain hourly and 30-minute PVA (Patient Ventilator Asynchrony) recordings. These recordings will be analysed offline to identify the settings used and to compare the hourly and 30-minute PVA (Patient Ventilator Asynchrony) values when synchronisation is automatically set. The relationships and differences between these values will be analysed. For this purpose, the IntelliSync+ option, already available on the device, will be used. This software continuously analyses waveform signals at least a hundred times per second. This allows for the immediate detection of patient efforts and the initiation of inspiration and expiration in real time, thereby replacing traditional trigger settings for inspiration and expiration. If the patient is already synchronised with this option, it will then be possible to switch to traditional synchronisation settings for comparison. Statistical analyses will be conducted using SPSS 24.0, JASP (Just Another Statistical Programme), Jamovi ( fork of JASP), or R software. Initially, all numerical and categorical data will be evaluated using descriptive statistical methods. The distributions of numerical variables will be examined using visual (histograms and probability plots) and analytical methods (Kolmogorov-Smirnov/Shapiro-Wilk tests). Mean/SD (standard deviation) or median/interquartile range (IQR) will be used as measures of distribution. For comparing numerical data that follows a normal distribution, the Student-t test will be used, and for non-normally distributed data, the Mann-Whitney U or Wilcoxon signed-rank tests will be employed. PVA (Patient Ventilator Asynchrony) values will be statistically compared. For the analysis of categorical data, the Chi-Square test will be applied. Bayesian analysis may also be used as necessary during the writing of the study. The results obtained will be interpreted and reported by the researchers. Results with a "p" value below 0.05 will be considered statistically significant.

NCT ID: NCT06356909 Recruiting - Clinical trials for Neonatal Respiratory Distress

Study of PREMEdication Before Laryngoscopy in Neonates in France

SUPREMEneo
Start date: March 11, 2024
Phase:
Study type: Observational

This study is a national prospective survey on practices of premedication before laryngoscopy in neonates. The survey will evaluate adequation to the French best practice guidelines to improve their dissemination and to identify current practices of premedication before laryngoscopy in neonates in French units (agents, dosing, efficacy, safety)

NCT ID: NCT06350565 Not yet recruiting - Clinical trials for Respiratory Distress Syndrome of Newborn

A Clinical Pharmacological Study of Dose Halving of Dexamethasone in Pregnant Women With Preterm Labour With Preterm Birth at Greater Than or Equal to 34 Gestational Weeks (34GW+)

Start date: April 30, 2024
Phase: N/A
Study type: Interventional

This study plans to conduct a DEX dose halving study and a normal dose study in 34+0-35+6 GW women with preterm preterm labour. In addition, this study plans to conduct a DEX dose halving study and a normal dose study in 34-38+6 GW preterm pregnant women with GDM or diabetic co-pregnancy to explore the feasibility of dose halving in pregnant women with diabetes mellitus.