Clinical Trials Logo

Respiratory Distress Syndrome clinical trials

View clinical trials related to Respiratory Distress Syndrome.

Filter by:
  • Not yet recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06387823 Not yet recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Efficacy and Safety of Sivelestat Sodium and Dexamethasone in the Treatment of ARDS

STAR
Start date: April 27, 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to evaluate the efficacy and safety of Sivelestat sodium and dexamethasone in the treatment of patients with moderate to severe ARDS. The main questions it aims to answer are: - Is Sivelestat sodium more effective in the treatment of patients with moderate to severe ARDS compared with placebo? - Is dexamethasone more effective in the treatment of patients with moderate to severe ARDS compared with placebo? Participants will receive Sivelestat sodium, dexamethasone or placebo. Researchers will compare the efficacy and safety of Sivelestat sodium, dexamethasone and placebo.

NCT ID: NCT06372951 Not yet recruiting - Clinical trials for Neonatal Respiratory Distress

Lung Ultrasound in Neonatal Intensive Care Units

Start date: May 1, 2024
Phase:
Study type: Observational

Identification of lung diseases causing neonatal respiratory distress by lung ultrasound as a tool that can replace x-ray .

NCT ID: NCT06369584 Not yet recruiting - Clinical trials for Extracorporeal Membrane Oxygenation

Prone Position During ECMO in Pediatric Patients With Severe ARDS

PEPAD
Start date: May 1, 2024
Phase: N/A
Study type: Interventional

In 2023, the second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) updated the diagnostic and management guidelines for Pediatric Acute Respiratory Distress Syndrome (PARDS). The guidelines do not provide sufficient evidence-based recommendations on whether prone positioning ventilation is necessary for severe PARDS patients. However, the effectiveness of Extracorporeal Membrane Oxygenation (ECMO) in treating severe PARDS has been fluctuating around 70% according to recent data from Extracorporeal Life Support Organization (ELSO). In 2018, the Randomized Evaluation of Sedation Titration for Respiratory Failure (RESTORE) study group conducted a retrospective analysis and concluded that ECMO does not significantly improve survival rates for severe PARDS. However, this retrospective study mainly focused on data from North America, with significant variations in annual ECMO support cases among different centers, which may introduce bias. With advancements in ECMO technology and materials, ECMO has become safer and easier to operate. In recent years, pediatric ECMO support technology has rapidly grown in mainland China and is increasingly being widely used domestically to rescue more children promptly. ECMO can also serve as a salvage measure for severely ARDS children who have failed conventional mechanical ventilation treatment. When optimizing ventilator parameters (titrating positive end expiratory pressure (PEEP) levels, neuromuscular blockers, prone positioning), strict fluid management alone cannot maintain satisfactory oxygenation (P/F<80mmHg or Oxygen Index (OI) >40 for over 4 hours or OI >20 for over 24 hours), initiating ECMO can achieve lung-protective ventilation strategies with ultra-low tidal volumes to minimize ventilator-associated lung injury.

NCT ID: NCT06357780 Not yet recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Closed-loop syncHronization vErsuS convenTional Synchronization in sPontaneously Breathing Adult Nonivasive ventilationPatients

CHESTSPAN
Start date: April 8, 2024
Phase: N/A
Study type: Interventional

The study is a multicentric prospective randomised cross-over study. It evaluates the compatibility of patients with the device without altering the routine treatment applied. During this evaluation, either the clinician-adjusted values on the device or the standard pre-set values are used to obtain hourly and 30-minute PVA (Patient Ventilator Asynchrony) recordings. These recordings will be analysed offline to identify the settings used and to compare the hourly and 30-minute PVA (Patient Ventilator Asynchrony) values when synchronisation is automatically set. The relationships and differences between these values will be analysed. For this purpose, the IntelliSync+ option, already available on the device, will be used. This software continuously analyses waveform signals at least a hundred times per second. This allows for the immediate detection of patient efforts and the initiation of inspiration and expiration in real time, thereby replacing traditional trigger settings for inspiration and expiration. If the patient is already synchronised with this option, it will then be possible to switch to traditional synchronisation settings for comparison. Statistical analyses will be conducted using SPSS 24.0, JASP (Just Another Statistical Programme), Jamovi ( fork of JASP), or R software. Initially, all numerical and categorical data will be evaluated using descriptive statistical methods. The distributions of numerical variables will be examined using visual (histograms and probability plots) and analytical methods (Kolmogorov-Smirnov/Shapiro-Wilk tests). Mean/SD (standard deviation) or median/interquartile range (IQR) will be used as measures of distribution. For comparing numerical data that follows a normal distribution, the Student-t test will be used, and for non-normally distributed data, the Mann-Whitney U or Wilcoxon signed-rank tests will be employed. PVA (Patient Ventilator Asynchrony) values will be statistically compared. For the analysis of categorical data, the Chi-Square test will be applied. Bayesian analysis may also be used as necessary during the writing of the study. The results obtained will be interpreted and reported by the researchers. Results with a "p" value below 0.05 will be considered statistically significant.

NCT ID: NCT06350565 Not yet recruiting - Clinical trials for Respiratory Distress Syndrome of Newborn

A Clinical Pharmacological Study of Dose Halving of Dexamethasone in Pregnant Women With Preterm Labour With Preterm Birth at Greater Than or Equal to 34 Gestational Weeks (34GW+)

Start date: April 30, 2024
Phase: N/A
Study type: Interventional

This study plans to conduct a DEX dose halving study and a normal dose study in 34+0-35+6 GW women with preterm preterm labour. In addition, this study plans to conduct a DEX dose halving study and a normal dose study in 34-38+6 GW preterm pregnant women with GDM or diabetic co-pregnancy to explore the feasibility of dose halving in pregnant women with diabetes mellitus.

NCT ID: NCT06322758 Not yet recruiting - Clinical trials for Acute Respiratory Distress Syndrome ARDS

Driving Pressure-guided Tidal Volume Ventilation in the Acute Respiratory Distress Syndrome

DRIVENT
Start date: September 1, 2024
Phase: N/A
Study type: Interventional

Acute respiratory distress syndrome (ARDS) is associated with high mortality, some of which can be attributed to ventilator-induced lung injury (VILI) when artificial ventilation is not customized to the severity of lung injury. As ARDS is characterized by a decrease in aerated lung volume, reducing tidal volume (VT) from 12 to 6 mL/kg of predicted body weight (PBW) was shown to improve survival more than 20 years ago. Since then, the VT has been normalized to the PBW, meaning to the theoretical lung size (before the disease), rather than tailored to the severity of lung injury, i.e., to the size of aerated lung volume. During ARDS, the aerated lung volume is correlated to the respiratory system compliance (Crs). The driving pressure (ΔP), defined as the difference between the plateau pressure and the positive end expiratory pressure, represents the ratio between the VT and the Crs. Therefore, the ΔP normalizes the VT to a surrogate of the aerated lung available for ventilation of the diseased lung, rather than to the theoretical lung size of the healthy lung, and thus represents more accurately the actual strain applied to the lungs. In a post hoc analysis of 9 randomized controlled trials, Amato et al. found that higher ΔP was a better predictor of mortality than higher VT, with an increased risk of death when the ΔP > 14 cm H2O. These findings have been confirmed in subsequent meta-analysis and large-scale observational data. In a prospective study including 50 patients, the investigators showed that a ΔPguided ventilation strategy targeting a ΔP between 12 and 14 cm H2O significantly reduced the mechanical power, a surrogate for the risk of VILI, compared to a conventional PBW-guided ventilation. In the present study, the investigators hypothesize that the physiological individualization of ventilation (ΔP-guided VT) may improve the outcome of patients with ARDS compared to traditional anthropometrical adjustment (PBW-guided VT)

NCT ID: NCT06319274 Not yet recruiting - Clinical trials for Endothelial Dysfunction

Infusion of Prostacyclin vs Placebo for 72-hours in Mechanically Ventilated Patients With Acute Respiratory Failure

COMBAT-ARF
Start date: April 1, 2024
Phase: Phase 2
Study type: Interventional

The purpose of this clinical trial is to investigate the efficacy and safety of continuous intravenous administration of low dose iloprost versus placebo for 72-hours, in 450 mechanically ventilated patients with infectious respiratory failure. The study hypothesis is that iloprost may be beneficial as an endothelial rescue treatment as it is anticipated to deactivate the endothelium and restore vascular integrity in patients suffering from respiratory failure caused by endothelial breakdown, ultimately improving survival.

NCT ID: NCT06308926 Not yet recruiting - Clinical trials for Acute Respiratory Distress Syndrome

MRG-001 as an Immunoregulatory and Regenerative Therapy for ARDS Patients

SUMMIT
Start date: July 1, 2024
Phase: Phase 2
Study type: Interventional

This is a phase IIa, dose-ranging, proof-of-concept study of MRG-001 in patients with ARDS. The aim is to determine the safety and preliminary efficacy of MRG-001 across two dose ranges.

NCT ID: NCT06302192 Not yet recruiting - Acute Kidney Injury Clinical Trials

Renal Doppler to Predict Acute Kidney Injury (AKI) in ARDS Patients. (RED-AKI Study)

RED-AKI
Start date: April 1, 2024
Phase:
Study type: Observational

This is a multicenter international observational prospective cohort study. The main questions it aims to answer are: - PRIMARY AIM: To describe the capability of IRVF demodulation at diagnosis of ARDS to predict development of AKI within 7 days from the ARDS onset - SECONDARY AIMS: A)Describe the capability of IRVF demodulation or pattern of IRVF (continuous, pulsatility, biphasic, monophasic) to predict development of AKI within 14 days from the ARDS onset. B) To describe the RD parameters and VexUS in the AKI and no AKI patients over time. C) Describe the impact of invasive mechanical ventilation (IMV) on the intrarenal venous congestion and VexUS., D) Evaluation of effect of CRRT on IRVF pattern, VexUS and parameters. E) Describe the feasibility of renal doppler to assess IRVF in critically ill respiratory patients. F) Evaluate the incidence of AKD and CKD Participants will Adult patients with diagnosis of ARDS admitted to intensive care unit and undergoing invasive mechanical ventilation

NCT ID: NCT06292338 Not yet recruiting - Clinical trials for Neonatal Respiratory Distress

Lung Sonar in Neonatal Respiratory Disorders

Start date: May 1, 2024
Phase:
Study type: Observational

This study aimed to determine the value of chest ultrasonography in comparison to other tools as chest x-ray and ABG in diagnosis and follow up of neonates with respiratory disorders.