Clinical Trials Logo

Clinical Trial Summary

The study is a non-randomized, prospective trial of men scheduled for radical prostatectomy for treatment of prostate cancer as standard of care and will undergo a series of pre-operative multi-modality imaging studies. Pre-operative imaging will be correlated with actual pathology results and statistical modeling performed to determine the most informative imaging biomarkers in predicting cancer location and aggressiveness (Gleason Score).


Clinical Trial Description

The over-arching goal is to "improve the quality of life for survivors of prostate cancer" through advanced imaging tools for improved pre-treatment detection and characterization of prostate cancer through non-invasive imaging. Seminal research measuring tissue sodium concentration (TSC) in human PCa with sodium MRI has demonstrated increased TSC in prostate lesions related to tumor aggressiveness. This suggests that the addition of sodium MRI to mpMRI data will enhance the identification and characterization of prostate lesions in men with PCa. This will improve the healthcare of men through better risk stratification and treatment decisions, which will ultimately reduce overtreatment. Radio-labeled PET tracers that target PSMA have demonstrated exceptional sensitivity for molecular imaging of prostate lesions. Lesion-detection specificity of combined PSMA PET and mpMRI is very high (97 - 100%). However, PSMA PET is not practical for active surveillance of prostate cancer within the current healthcare system due to limited access and the fact that its added cost and radiation dose restricts its utility for repeated scans. However, as a tool to develop and validate our imaging assay, it is unparalleled. Compared with hybrid PET/MRI, a single modality imaging assay based only on mpMRI contrasts and endogenous TSC would be more widely available, cost effective and find wider clinical adoption - particularly for AS. The immediate expected outcome from this project is that an MRI assay combining data from mpMRI and sodium MRI will have a similar ability as PSMA PET to accurately discriminate between low- and high-risk PCa for improved treatment decisions and surveillance of low-risk disease. The transformative potential of a non-invasive, single modality, whole-gland imaging assay comprised of biomarkers from combined TSC and mpMRI could ultimately replace serial biopsies for surveillance of men with low- and intermediate-risk disease. Patients who are educated to understand the typical slow progression of low-risk PCa, surveillance methods and treatment risks are more likely to consider AS. In a systematic approach developed to improve physician counselling of low-risk PCa patients, the acceptance rate for AS was improved to 94% - a relative reduction of approximately 30% in the risk of unnecessary curative treatment. However, it is also important to note that the rate of subsequent treatment for men undergoing AS may be as high as 50% over 10 years of follow-up. The majority of these men are transitioned to treatment within 2-3 years of initial diagnosis. Identification of those men who fit the criteria for AS but are destined to have early progression is an important clinical goal. Those men can be streamed to early treatment through longitudinal assessment of lesion progression with this imaging assay and thus increase the confidence and uptake of AS protocols. AS of PCa (including possible delayed treatment) saves costs over the lifetime of a patient, compared with immediate treatment and provides superior quality of life. Research Strategy: The investigators will evaluate a non-invasive imaging assay for in vivo characterization of prostate lesions comprised of clinical multi-parametric magnetic resonance imaging (mpMRI) combined with sodium magnetic resonance imaging (sodium MRI) in a cohort of men with biopsy-proven prostate cancer. The use of mpMRI to detect, localize and stage prostate cancer is becoming standard clinical practice. Prior research in ten patients has established that tissue sodium concentration (TSC) assessed by sodium MRI increases significantly with histological grade in prostate lesions. The addition of TSC data to conventional mpMRI data (i.e. ADC values, T2 contrast, contrast agent wash-in/out rates) will be evaluated in a multivariate data analysis to demonstrate that a combination of these imaging protocols improves the characterization of PCa. The resulting predictive tool (imaging assay) will accurately discriminate between low- and high-risk PCa for improved treatment decisions and to assess possible progression of low-risk disease during surveillance. This imaging assay will be validated against positron emission tomography (PET) using a radio-labeled tracer which binds to prostate-specific membrane antigen (PSMA). PSMA PET is arguably the most sensitive imaging method for detection of intra-prostatic lesions. Importantly, it has a high sensitivity for prostate lesion detection (>90%), even for lower tumor grades where mpMRI has difficulties. Maximum standard uptake value (SUVmax) of this radiotracer has been positively correlated with Gleason grade and as such, is an excellent comparator for TSC assessment of lesion aggressiveness. Unfortunately, the limited accessibility and cost of PET hinders its clinical application. In this project, the investigators expect to validate that the addition of sodium MRI to mpMRI can provide similar lesion characterization compared to PSMA PET. Data supporting this hypothesis will be acquired using a hybrid PET/MRI system because this is the best imaging platform for this project. If successful, the incorporation of sodium MRI into existing mpMRI protocols would improve characterization of disease and be a more cost effective and generalizable innovation compared to PET-based techniques that require both an expensive probe as well as hybrid imaging platforms. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04053842
Study type Interventional
Source Lawson Health Research Institute
Contact Project Coordinator: Catherine Hildebrand, PhD
Phone 519-685-8500
Email catherine.hildebrand@lhsc.on.ca
Status Recruiting
Phase Phase 2
Start date February 4, 2021
Completion date August 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05613023 - A Trial of 5 Fraction Prostate SBRT Versus 5 Fraction Prostate and Pelvic Nodal SBRT Phase 3
Recruiting NCT05540392 - An Acupuncture Study for Prostate Cancer Survivors With Urinary Issues Phase 1/Phase 2
Recruiting NCT05156424 - A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer Phase 1/Phase 2
Completed NCT03177759 - Living With Prostate Cancer (LPC)
Completed NCT01331083 - A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration Resistant Prostate Cancer Phase 2
Recruiting NCT05540782 - A Study of Cognitive Health in Survivors of Prostate Cancer
Active, not recruiting NCT04742361 - Efficacy of [18F]PSMA-1007 PET/CT in Patients With Biochemial Recurrent Prostate Cancer Phase 3
Completed NCT04400656 - PROState Pathway Embedded Comparative Trial
Completed NCT02282644 - Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry N/A
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06305832 - Salvage Radiotherapy Combined With Androgen Deprivation Therapy (ADT) With or Without Rezvilutamide in the Treatment of Biochemical Recurrence After Radical Prostatectomy for Prostate Cancer Phase 2
Recruiting NCT05761093 - Patient and Physician Benefit/ Risk Preferences for Treatment of mPC in Hong Kong: a Discrete Choice Experiment
Completed NCT04838626 - Study of Diagnostic Performance of [18F]CTT1057 for PSMA-positive Tumors Detection Phase 2/Phase 3
Recruiting NCT03101176 - Multiparametric Ultrasound Imaging in Prostate Cancer N/A
Completed NCT03290417 - Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer N/A
Active, not recruiting NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Recruiting NCT03679819 - Single-center Trial for the Validation of High-resolution Transrectal Ultrasound (Exact Imaging Scanner ExactVu) for the Detection of Prostate Cancer
Completed NCT03554317 - COMbination of Bipolar Androgen Therapy and Nivolumab Phase 2
Completed NCT03271502 - Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy N/A