View clinical trials related to Phantom Limb.
Filter by:When a limb is severed, pain perceived in the part of the body that no longer exists often develops and is called "phantom limb" pain. Unfortunately, phantom pain goes away in only 16% of afflicted individuals, and there is currently no reliable definitive treatment. The exact reason that phantom limb pain occurs is unclear, but when a nerve is cut-as happens with an amputation-changes occur in the brain and spinal cord that actually increase with worsening phantom pain. These abnormal changes may often be corrected by putting local anesthetic-called a "nerve block"-on the injured nerve, effectively keeping any "bad signals" from reaching the brain with a simultaneous resolution of the phantom limb pain. However, when the nerve block resolves after a few hours, the phantom pain returns. But, this demonstrates that the brain abnormalities-and phantom pain-that occur with an amputation are not necessarily fixed, and may be dependent upon the "bad" signals being sent from the injured nerve(s), suggesting that a very long peripheral nerve block-lasting many months rather than hours-may permanently reverse the abnormal changes in the brain, and provide definitive relief from phantom pain. A prolonged nerve block lasting a few months may be provided by freezing the nerve using a process called "cryoneurolysis". The ultimate objective of the proposed research study is to determine if cryoanalgesia is an effective treatment for intractable post-amputation phantom limb pain. The proposed pilot study will include subjects with an existing above-knee amputation who experience intractable daily phantom limb pain. A single ultrasound-guided treatment of cryoneurolysis (or sham block-determined randomly like a flip of a coin) will be applied to the major nerves of the thigh. Although not required, each subject may return 4-6 months later for the alternative treatment (if the first treatment is sham, then the second treatment would be cryoneurolysis) so that all participants have the option of receiving the active treatment. Subjects will be followed for a total of 12 months with data collected by telephone.
This research is being done to determine if an anesthetic like Lidocaine, may be effective when injected around the sciatic nerve of the intact limb in patients with limb loss pain on the contralateral side.
The objective of this study is to develop a virtual rehabilitation system that can be used to effectively treat Phantom Limb Pain (PLP) within the research setting and for at-home use by individuals with upper and lower extremity amputation. We hypothesize that the system will improve PLP for individuals with upper or lower extremity amputation, as measured through with various outcome measures and questionnaires.
The study will investigate the application of a non-pharmacological operant conditioning approach to reduce phantom limb pain (PLP). PLP afflicts 60-90% people who have lost a limb. It can last for years and lead to drug dependence, job loss, and poor quality of life. Current non-pharmacological interventions are encouraging but limited, and their efficacy remains unclear. Limb amputation is known to lead to abnormal sensorimotor reorganization in the brain. Multiple studies have shown that PLP severity is correlated with the extent of this reorganization. The current study will train participants via realtime feedback of brain responses to promote more normal sensorimotor response, with the goal to reduce phantom limb pain.
Brief Summary: The purpose of this study is to evaluate the effectiveness of neuromodulation for relief of phantom limb pain (PLP) using peripheral nerve (PNS) and spinal cord (SCS) stimulation with implantable electrodes. The researchers expect that PLP in patients with lower limb amputation will be relieved by peripheral nerve and the spinal cord stimulation. The possibility of finding EEG biomarkers for phantom pain will be explored.
Paired associative stimulation (PAS) is a non-invasive brain stimulation protocol, where two stimuli (a peripheral and a cortical one, the latter delivered with transcranial magnetic stimulation - TMS) are repeatedly associated to enhance plasticity in the brain. In the present study, a new cross-modal, visuo-motor PAS protocol - called "mirror-PAS"- will be tested as a possible non-invasive brain stimulation treatment in neurological rehabilitation to promote motor recovery and pain reduction. Participants will perform the standard PAS targeting the motor system and the recently developed mirror-PAS in two separate sessions. The investigators will compare the possible effect of the protocols in terms of neurophysiological and behavioral outcomes to identify the optimal PAS method to enhance plasticity and promote sensory-motor function.
The objective of this study is to evaluate efficacy of varied medical and procedural therapies used to treat pain after surgical amputation of a limb. The primary outcome will be assessment of pain severity at rest and with movement as measured by pain scores on Numerical Rating Scale (NRS) 0 to 10, where 0 is not pain and 10 is the worst pain possible, taken on post-operative day 1, day 7, 30 days, 90 days, 6 months, and 1 year (+/- 3 days at each time point).
Phantom limb pain is a condition characterized by painful sensations in the missing part of the amputated limb, which reduces the quality of life of the individual. It has been reported that approximately 85% of patients undergoing amputation experience phantom limb pain, and chronic pain is the most common symptom in individuals who have undergone limb amputation. These problems negatively affect individuals physically, mentally and socially and lead to deterioration of holistic well-being. This study will be examined the effect of distant reiki on pain and holistic well-being of ındividuals with phantom pain after amputation.
The purpose of this study is to evaluate the effectiveness of neuromodulation for relief of phantom limb pain (PLP) using peripheral nerve (PNS) and spinal cord (SCS) stimulation with implantable electrodes. The researchers expect that PLP in patients with upper limb amputation will be relieved by peripheral nerve and the spinal cord stimulation. The possibility of finding EEG biomarkers for phantom pain will be explored.
Controlled clinical trial of two parallel groups, with random assignment 1:1, non-inferiority, blinded for the patient, for who administers the intervention and for who analyzes the data. 112 participants