View clinical trials related to Hemiplegia.
Filter by:flow restriction training combined with routine rehabilitation training can promote the recovery of lower limb muscle strength on the hemiplegic side of stroke patients, improve the lower limb motor function of patients, and further improve their daily life and walking ability. It provides a new treatment method for stroke patients with hemiplegia that leads to lower limb function loss and activity disorder, and the therapy also has the advantages of simple operation, high safety, good patient compliance and low cost, which is worthy of further clinical research and promotion.
A randomized clinical trial was performed on hemiplegic post-stroke patients with a sample size of 50 (25 in each group).
This study aimed to evaluate the caregiving burden and severity of depression in patients with right hemiplegia and left hemiplegia.
Objective: The aim of this study was to investigate the effects of virtual reality application on quality of life and functionality, especially sitting balance, in hemiplegic patients.
Background: Hemiplegic shoulder pain is one of the most common complications after a stroke. There are many treatment strategies for this complication. High-intensity laser therapy (HILT) is a new treatment option, and we aimed to compare the effectiveness of conventional electrotherapy agents and HILT in this study. Patients and methods: Participants (N = 42) were randomized into the HILT (n = 21) and TENS+US (n = 21) groups. Group 1 received 3 sessions of HILT per week for 3 weeks in addition to a therapeutic exercise program that performed 5 sessions per week for 3 weeks. Group 2 received conventional physical therapy and a therapeutic exercise program for HSP of 5 sessions per week for 3 weeks. Patients were assessed before and after treatment on the on the 6th week for radiological evaluation with ultrasonography and for clinical parameters with VAS, AMAT, MRS, and FIQ scores.
Strokes are one of the leading causes of long term disability and death in the United States. A stroke occurs when the blood supply to the brain is blocked, damaging parts of the brain. Many stroke survivors have difficulty completing dexterous hand movements and manipulating objects due brain damage in the sensorimotor cortex. Damage to these areas can cause decreased motor movements and tactile sensation on the affected side. Research shows that tactile sensation is necessary for maintaining grip, grading grip forces and decreasing object slippage. Therefore, it is important to address tactile sensation with motor performance during stroke rehabilitation to improve performance outcomes among stroke survivors.
The goal of lower limb rehabilitation after stroke is recovery of independent walking at home and in the community. Few stroke survivors achieve this goal. Suboptimal outcomes are due to the serious and intransigent nature of movement impairments caused by stroke and the scarcity of feasible and effective therapies that restore movement lost to stroke. Our team has developed a novel exercise intervention called CUped (pronounced cupid, like the Roman god) to address barriers to recovery and improve walking after stroke. CUped is so called because it compels use of the paretic limb during a movement that resembles pedaling. This project will examine safety, acceptability, and tolerance to CUped, characterize its therapeutic effects, and identify dose-response relationships. Results will provide preliminary data for an R01 to support a randomized controlled trial (RCT). CUped is designed to help stroke survivors recover lower limb movement lost to stroke, thereby improving walking. It is intended to be used as an adjunct to gait training. CUped uses a robotic technology that eliminates compensatory movements that interfere with recovery, compels use of the paretic lower limb, and targets 3 key movement impairments caused by stroke: decreased muscle output from the paretic limb, inappropriate paretic muscle timing, and abnormal interlimb coordination. Exercise is done in sitting which enables high repetition practice. Like walking, CUped requires continuous, reciprocal use of both lower limbs; effects are likely to transfer to walking. The risk-reward profile of this proposal is ideal for an R21, which is an NIH funding opportunity intended to encourage exploratory/developmental research by providing support for the early and conceptual stages of project development. CUped is a novel therapy grounded in a physiologic premise and based on prior observations from our laboratory. The investigators have pilot data suggesting that CUped fulfills its design specifications, and this study will be the first to test its therapeutic effects. In this Stage 1 rehabilitation trial, The investigators will support or quickly refute the hypothesis that CUped is safe, acceptable, and capable of eliciting a therapeutic response in stroke survivors. The investigators will also examine tolerance to CUped and dose-response effects. If our hypotheses are supported, the investigators will be poised to run an RCT to isolate the effects of CUped and compare them to standard care. Future work will investigate physiologic mechanisms underlying the effects of CUped.
Observation of the effect of vibration therapy on the gait of children with cerebral palsy and the analysis of their functional evolution
Spasticity, common after a stroke, aggravates the patient's motor impairment causing pain and limitation in daily activities such as eating, dressing and walking. There are different spasticity treatments, such as botulinum neurotoxin, in the first place. Among the emerging therapies is focal extracorporeal shock wave therapy, consisting of a sequence of sonic (mechanical) impulses with high peak pressure. Systematic reviews highlighted that shock waves effectively improve lower and upper limb spasticity. Moreover, the shock waves therapeutic effect can last up to 12 weeks from the last treatment session. When used to treat stroke spasticity, the shock waves' mechanism of action is poorly detailed. On the one side, shock waves could change the physical properties of the muscular tissue (e.g. viscosity, rigidity). On the other, the shock waves produce a robust mechanical stimulation that massively activates muscle and skin mechanoreceptors (e.g. muscle spindles). This activation would modulate, in turn, the spinal (and supra-spinal) circuits involved in spasticity. To our knowledge, no study investigated the shock waves mechanism of action in stroke upper limb spasticity. Research question: do shock waves exert their therapeutic effect on spasticity by changing the muscle's physical properties or by indirectly modulating the excitability of spinal circuits? Specific aims: To investigate the mechanism of action of shock wave therapy as a treatment of upper limb spasticity after a stroke. Two major hypotheses will be contrasted: shock waves reduce hypertonia 1) by changing the muscle's physical features or 2) by changing the motoneurons excitability and the excitability of the stretch reflex spinal circuits. Shock wave therapy is expected to improve spasticity, thus improving the following clinical tests: the Modified Ashworth Scale (an ordinal score of spasticity) and the Functional Assessment for Upper Limb (FAST-UL, an ordinal score of upper limb dexterity). This clinical improvement is expected to be associated with changes in spastic muscle echotexture assessed with ultrasounds, such as an improvement in the Heckmatt scale (an ordinal score of muscle echotexture in spasticity). Clinical improvement is also expected to be associated with an improvement in the following neurophysiological parameters: a reduction of the H/Mmax ratio (an index of hyperexcitability of the monosynaptic stretch reflex circuit), a decrease in amplitude of the F waves (a neurophysiological signal reflecting the excitability of single/restricted motoneurones) and an increase of the homosynaptic depression (also known as post-activation depression, reflecting the excitability of the transmission between the Ia fibres and motoneurones). Understanding the shock wave mechanism of action will lead to a better clinical application of this spasticity treatment. If the shock waves exert their therapeutic effect by changing the muscle's physical properties, they could be more appropriate for patients with muscle fibrosis on ultrasounds. On the contrary, if the shock waves work on spasticity by indirectly acting on the nervous system's excitability, then a neurophysiology study could be used to preliminary identify the muscle groups with the most significant neurophysiological alterations, which could be the muscles benefitting the most from this treatment.
introduction:The aim of this study was to show the relationship of distal femoral cartilage and quadriceps thicknesses with functional status and presence of sarcopenia in ambulatory stroke patients with voluntary movement. Materials and Method: Forty-eight patients who were diagnosed with stroke due to cerebrovascular disease, had started voluntary movement, and had a motor recovery of 3 or above according to Brunnstrom's Staging were included in this cross-sectional study.