Coronary Artery Disease Clinical Trial
— AAMS2Official title:
Autologous Atrial Appendage Micrografts Transplanted During Coronary Artery Bypass Surgery: the AAMS2 Randomized, Double-blinded, and Placebo-controlled Trial
NCT number | NCT05632432 |
Other study ID # | AAMS2 |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | April 1, 2024 |
Est. completion date | December 31, 2026 |
Ischemic heart disease (IHD) leads the global mortality statistics. Atherosclerotic plaques in coronary arteries hallmark IHD, drive hypoxia, and may rupture to result in myocardial infarction (MI) and death of contractile cardiac muscle, which is eventually replaced by a scar. Depending on the extent of the damage, dysbalanced cardiac workload often leads to emergence of heart failure (HF). The atrial appendages, enriched with active endocrine and paracrine cardiac cells, has been characterized to contain cells promising in stimulating cardiac regenerative healing. In this AAMS2 randomized controlled and double-blinded trial, the patient's own tissue from the right atrial appendage (RAA) is for therapy. A piece from the RAA can be safely harvested upon the set-up of the heart and lung machine at the beginning of coronary artery bypass (CABG) surgery. In the AAMS2 trial, a piece of the RAA tissue is processed and utilized as epicardially transplanted atrial appendage micrografts (AAMs) for CABG-support therapy. In our preclinical evaluation, epicardial AAMs transplantation after MI attenuated scarring and improved cardiac function. Proteomics suggested an AAMs-induced glycolytic metabolism, a process associated with an increased regenerative capacity of myocardium. Recently, the safety and feasibility of AAMs therapy was demonstrated in an open-label clinical study. Moreover, as this study suggested increased thickness of the viable myocardium in the scarred area, it also provided the first indication of therapeutic benefit. Based on randomization with estimated enrolment of a total of 50 patients with 1:1 group allocation ratio, the piece of RAA tissue is either perioperatively processed to AAMs or cryostored. The AAMs, embedded in a fibrin matrix gel, are placed on a collaged-based matrix sheet, which is then epicardially sutured in place at the end of CABG surgery. The location is determined by preoperative late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMRI) to pinpoint the ischemic scar. The controls receive the collagen-based patch, but without the AAMs. Study blood samples, transthoracic echocardiography (TTE), and LGE-CMRI are performed before and at 6-month follow-up after the surgery. The trial's primary endpoints focus on changes in cardiac fibrosis as evaluated by LGE-CMRI and circulating levels of N-terminal prohormone of brain natriuretic peptide (NT-proBNP). Secondary endpoints center on other efficacy parameters, as well as both safety and feasibility of the therapy.
Status | Recruiting |
Enrollment | 50 |
Est. completion date | December 31, 2026 |
Est. primary completion date | January 31, 2026 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 75 Years |
Eligibility | Inclusion Criteria: - Informed consent obtained - Left ventricular ejection fraction (LVEF) between = 15% and = 40% at recruitment (transthoracic echocardiography) - New York Heart Association (NYHA) Class II-IV heart failure symptoms Exclusion Criteria: - Heart failure due to left ventricular outflow tract obstruction - Acute myocardial infarction (AMI) within last 30 days - History of life-threatening and possibly repeating ventricular arrhythmias or resuscitation, or an implantable cardioverter-defibrillator - Stroke or other disabling condition within 3 months before screening - Severe valve disease or scheduled valve surgery - Renal dysfunction (GFR <45 ml/min/1.73m2) - Other disease limiting life expectancy - Contraindications for coronary angiogram or LGE-CMRI - Participation in some other clinical trial Screening Failure: - After optimization of medications, no visible scar or LVEF = 50% in preoperative LGE-CMRI - Preoperative LGE-CMRI has not been performed prior scheduled CABG |
Country | Name | City | State |
---|---|---|---|
Finland | Hospital District of Helsinki and Uusimaa, Helsinki University Hospital, Heart and Lung Center & Cardiac Unit | Helsinki | Uusimaa |
Lead Sponsor | Collaborator |
---|---|
Hospital District of Helsinki and Uusimaa | Oulu University Hospital, University of Helsinki |
Finland,
Bittner V, Weiner DH, Yusuf S, Rogers WJ, McIntyre KM, Bangdiwala SI, Kronenberg MW, Kostis JB, Kohn RM, Guillotte M, et al. Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. JAMA. 1993 Oct 13;270(14):1702-7. — View Citation
Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med. 2017 Jun 13;2:17. doi: 10.1038/s41536-017-0024-1. eCollection 2017. — View Citation
Campeau L. Letter: Grading of angina pectoris. Circulation. 1976 Sep;54(3):522-3. No abstract available. — View Citation
Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000 Mar 1;35(3):569-82. doi: 10.1016/s0735-1097(99)00630-0. — View Citation
Cutie S, Huang GN. Vertebrate cardiac regeneration: evolutionary and developmental perspectives. Cell Regen. 2021 Mar 1;10(1):6. doi: 10.1186/s13619-020-00068-y. — View Citation
Detert S, Stamm C, Beez C, Diedrichs F, Ringe J, Van Linthout S, Seifert M, Tschope C, Sittinger M, Haag M. The atrial appendage as a suitable source to generate cardiac-derived adherent proliferating cells for regenerative cell-based therapies. J Tissue Eng Regen Med. 2018 Mar;12(3):e1404-e1417. doi: 10.1002/term.2528. Epub 2017 Nov 21. — View Citation
Eurostat, online material (https://ec.europa.eu/eurostat/web/health/data/database) Accessed 3.4.2022
Evens L, Belien H, D'Haese S, Haesen S, Verboven M, Rummens JL, Bronckaers A, Hendrikx M, Deluyker D, Bito V. Combinational Therapy of Cardiac Atrial Appendage Stem Cells and Pyridoxamine: The Road to Cardiac Repair? Int J Mol Sci. 2021 Aug 27;22(17):9266. doi: 10.3390/ijms22179266. — View Citation
Freitas P, Madeira M, Raposo L, Madeira S, Brito J, Brizido C, Gama F, Vale N, Ranchordas S, Magro P, Braga A, Goncalves PA, Gabriel HM, Nolasco T, Boshoff S, Marques M, Bruges L, Calquinha J, Sousa-Uva M, Abecasis M, Almeida M, Neves JP, Mendes M. Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention in Patients With Non-ST-Elevation Myocardial Infarction and Left Main or Multivessel Coronary Disease. Am J Cardiol. 2019 Mar 1;123(5):717-724. doi: 10.1016/j.amjcard.2018.11.052. Epub 2018 Dec 3. — View Citation
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018 Nov 10;392(10159):1736-1788. doi: 10.1016/S0140-6736(18)32203-7. Epub 2018 Nov 8. Erratum In: Lancet. 2019 Jun 22;393(10190):e44. Lancet. 2018 Nov 17;392(10160):2170. — View Citation
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020 Aug;22(8):1342-1356. doi: 10.1002/ejhf.1858. Epub 2020 Jun 1. — View Citation
Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circ Res. 2016 Jan 22;118(2):216-21. doi: 10.1161/CIRCRESAHA.115.307017. Epub 2015 Dec 9. — View Citation
Hays RD, Morales LS. The RAND-36 measure of health-related quality of life. Ann Med. 2001 Jul;33(5):350-7. doi: 10.3109/07853890109002089. — View Citation
Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, Richardson JA, Ashour AM, Asaithamby A, Liang H, Xing C, Lu Z, Zhang CC, Sadek HA. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015 Jul 9;523(7559):226-30. doi: 10.1038/nature14582. Epub 2015 Jun 22. Erratum In: Nature. 2016 Apr 14;532(7598):268. — View Citation
Koninckx R, Daniels A, Windmolders S, Mees U, Macianskiene R, Mubagwa K, Steels P, Jamaer L, Dubois J, Robic B, Hendrikx M, Rummens JL, Hensen K. The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovasc Res. 2013 Mar 1;97(3):413-23. doi: 10.1093/cvr/cvs427. Epub 2012 Dec 19. — View Citation
Lalowski MM, Bjork S, Finckenberg P, Soliymani R, Tarkia M, Calza G, Blokhina D, Tulokas S, Kankainen M, Lakkisto P, Baumann M, Kankuri E, Mervaala E. Characterizing the Key Metabolic Pathways of the Neonatal Mouse Heart Using a Quantitative Combinatorial Omics Approach. Front Physiol. 2018 Apr 11;9:365. doi: 10.3389/fphys.2018.00365. eCollection 2018. — View Citation
Lampinen M, Nummi A, Nieminen T, Harjula A, Kankuri E; AADC Consortium. Intraoperative processing and epicardial transplantation of autologous atrial tissue for cardiac repair. J Heart Lung Transplant. 2017 Sep;36(9):1020-1022. doi: 10.1016/j.healun.2017.06.002. Epub 2017 Jun 10. No abstract available. — View Citation
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasche P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res. 2019 Mar 1;115(3):488-500. doi: 10.1093/cvr/cvz010. — View Citation
McKie PM, Burnett JC Jr. NT-proBNP: The Gold Standard Biomarker in Heart Failure. J Am Coll Cardiol. 2016 Dec 6;68(22):2437-2439. doi: 10.1016/j.jacc.2016.10.001. No abstract available. — View Citation
Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA. Hypoxia induces heart regeneration in adult mice. Nature. 2017 Jan 12;541(7636):222-227. doi: 10.1038/nature20173. Epub 2016 Oct 31. — View Citation
Nummi A, Mulari S, Stewart JA, Kivisto S, Teittinen K, Nieminen T, Lampinen M, Patila T, Sintonen H, Juvonen T, Kupari M, Suojaranta R, Kankuri E, Harjula A, Vento A; AADC consortium. Epicardial Transplantation of Autologous Cardiac Micrografts During Coronary Artery Bypass Surgery. Front Cardiovasc Med. 2021 Sep 14;8:726889. doi: 10.3389/fcvm.2021.726889. eCollection 2021. — View Citation
Nummi A, Nieminen T, Patila T, Lampinen M, Lehtinen ML, Kivisto S, Holmstrom M, Wilkman E, Teittinen K, Laine M, Sinisalo J, Kupari M, Kankuri E, Juvonen T, Vento A, Suojaranta R, Harjula A; AADC consortium. Epicardial delivery of autologous atrial appendage micrografts during coronary artery bypass surgery-safety and feasibility study. Pilot Feasibility Stud. 2017 Dec 20;3:74. doi: 10.1186/s40814-017-0217-9. eCollection 2017. — View Citation
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell. 2014 Apr 24;157(3):565-79. doi: 10.1016/j.cell.2014.03.032. Erratum In: Cell. 2014 May 22;157(5):1243. — View Citation
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 2020 Dec;46(6):1958-1972. doi: 10.3892/ijmm.2020.4746. Epub 2020 Oct 6. — View Citation
Rihal CS, Raco DL, Gersh BJ, Yusuf S. Indications for coronary artery bypass surgery and percutaneous coronary intervention in chronic stable angina: review of the evidence and methodological considerations. Circulation. 2003 Nov 18;108(20):2439-45. doi: 10.1161/01.CIR.0000094405.21583.7C. No abstract available. — View Citation
Russell SD, Saval MA, Robbins JL, Ellestad MH, Gottlieb SS, Handberg EM, Zhou Y, Chandler B; HF-ACTION Investigators. New York Heart Association functional class predicts exercise parameters in the current era. Am Heart J. 2009 Oct;158(4 Suppl):S24-30. doi: 10.1016/j.ahj.2009.07.017. — View Citation
Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update : Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson. 2020 Mar 12;22(1):19. doi: 10.1186/s12968-020-00610-6. — View Citation
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, Nummi A, Nykanen A, Eskin A, Stark C, Biancari F, Kiss J, Simpanen J, Ropponen J, Lemstrom K, Savinainen K, Lalowski M, Kaarne M, Jormalainen M, Elomaa O, Koivisto P, Raivio P, Backstrom P, Dahlbacka S, Syrjala S, Vainikka T, Vahasilta T, Tuncbag N, Karelson M, Mervaala E, Juvonen T, Laine M, Laurikka J, Vento A, Kankuri E. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives. Int J Mol Sci. 2021 Jun 21;22(12):6630. doi: 10.3390/ijms22126630. — View Citation
Sikorski V, Vento A, Kankuri E; IHD-EPITRAN Consortium. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. Mol Ther Nucleic Acids. 2022 Jul 20;29:426-461. doi: 10.1016/j.omtn.2022.07.018. eCollection 2022 Sep 13. — View Citation
Taylor CJ, Ryan R, Nichols L, Gale N, Hobbs FR, Marshall T. Survival following a diagnosis of heart failure in primary care. Fam Pract. 2017 Apr 1;34(2):161-168. doi: 10.1093/fampra/cmw145. — View Citation
Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, Flather M, Wilkins E, Wright L, Vos R, Bax J, Blum M, Pinto F, Vardas P; ESC Scientific Document Group. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur Heart J. 2018 Feb 14;39(7):508-579. doi: 10.1093/eurheartj/ehx628. — View Citation
van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016 Mar;18(3):242-52. doi: 10.1002/ejhf.483. Epub 2016 Jan 4. — View Citation
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013 Nov 27;310(20):2191-4. doi: 10.1001/jama.2013.281053. No abstract available. — View Citation
Xie Y, Lampinen M, Takala J, Sikorski V, Soliymani R, Tarkia M, Lalowski M, Mervaala E, Kupari M, Zheng Z, Hu S, Harjula A, Kankuri E; AADC consortium. Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction. J Heart Lung Transplant. 2020 Jul;39(7):707-718. doi: 10.1016/j.healun.2020.03.023. Epub 2020 Apr 7. — View Citation
* Note: There are 34 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in the amount of myocardial scar tissue | Measured by LGE-CMRI preoperatively and at the 6-month-follow-up | 6 months | |
Primary | Change in plasma concentrations of N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels | Measured from blood sample at preoperative visit, 3-month, and 6-month follow-ups | 6 months | |
Secondary | Efficacy: Change in left ventricular wall thickness | Measured by LGE-CMRI preoperatively and at the 6-month-follow-up | 6 months | |
Secondary | Efficacy: Change in viable left ventricular myocardium | Measured by LGE-CMRI preoperatively and at the 6-month-follow-up | 6 months | |
Secondary | Efficacy: Change in movement, systolic or diastolic function of the left ventricle | Measured by LGE-CMRI preoperatively and at the 6-month-follow-up | 6 months | |
Secondary | Efficacy: Change in left ventricular ejection fraction | Measured by LGE-CMRI preoperatively and at the 6-month-follow-up | 6 months | |
Secondary | Efficacy: Change in New York Heart Association (NYHA) class | NYHA class at the 3-month and 6-month follow-ups vs NYHA peoperatively | 6 months | |
Secondary | Efficacy: Change in Canadian Cardiovascular Society (CCS) class | CCS class at the 3-month and 6-month follow-ups vs CCS preoperatively | 6 months | |
Secondary | Efficacy: Major adverse cardiovascular and cerebrovascular events (MACCE) | MACCE during the study period | 6 months | |
Secondary | Efficacy: Deaths due to primary cardiovascular cause | Deaths (and cause of death) during the study period | 6 months | |
Secondary | Efficacy: Postoperative days in hospital | Measured as the CABG (and CVD) -related postoperative days spent in hospital | 1 week, up to 10 days | |
Secondary | Efficacy: Changes in the quality of life | Measured by RAND36 questionnaire preoperatively and at the 6-month-follow-up | 6 months | |
Secondary | Efficacy: Local changes in systolic and diastolic function | Measured by transthoracic echocardiography preoperatively and at the 3 and 6-months of follow-up
Measured by LGE-CMRI preoperatively and at 6-months of follow-up |
6 months | |
Secondary | Efficacy: Changes in myocardial strain and LVEF | Measured by TTE preoperatively and at the 3- and 6-months of follow-up | 6 months | |
Secondary | Safety: telemetric monitoring of rhythm | For assessing cardiac function after the CABG operation | 4 days | |
Secondary | Feasibility: Success in completing the delivery of the AAMs patch onto the epicardium [ Time Frame: 6 months ] | Measured in 0= success, 1= no success | The duration of CABG operation, 3-5 hours | |
Secondary | Feasibility: Waiting time for the AAMs patch | Waiting time in minutes for the atrial appendage micrograft transplant to be placed on the myocardium (placement after completion of all the required anastomoses) | 75-90 minutes from the start of CABG operation | |
Secondary | Feasibility: Waiting time in minutes for the heart | Waiting time in minutes for the heart after all the anastomoses are completed and before the AAMs patch is ready for epicardial transplantation. | 75-90 minutes from the start of CABG operation | |
Secondary | Feasibility: Closing the right atrial appendage | Closing the right atrial appendage after removing the standardized tissue piece for preparing the transplant.
According to the hospital protocol, appendage is closed with purse-string suture. 0 = no additional suturing needed, 1 = additional suturing needed |
1-5 minutes, at the decannulation phase at the end of CABG | |
Secondary | Safety; need for vasoactive medication | For assessing haemodynamics during the operation and at the intensive care unit | up to 2 days after CABG | |
Secondary | Safety; in-hospital infections | Transplant-related=1; Non-transplant-related=2; no infections=0 with details on organism, quantity, clinical and microbiological evaluation as well as harvesting site | 1 week, up to 10 days | |
Secondary | Observational: Blood and plasma long-read RNA sequencing, proteomics, and/or metabolomics | Chronologic (preoperative vs. 6-month follow-up) and cross-sectional (AAMs patch vs. CABG group) correlation of blood epitranscriptomes, transcriptome, proteome and/or metabolome with the above outcomes. | 6 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06030596 -
SPECT Myocardial Blood Flow Quantification for Diagnosis of Ischemic Heart Disease Determined by Fraction Flow Reserve
|
||
Completed |
NCT04080700 -
Korean Prospective Registry for Evaluating the Safety and Efficacy of Distal Radial Approach (KODRA)
|
||
Recruiting |
NCT03810599 -
Patient-reported Outcomes in the Bergen Early Cardiac Rehabilitation Study
|
N/A | |
Recruiting |
NCT06002932 -
Comparison of PROVISIONal 1-stent Strategy With DEB Versus Planned 2-stent Strategy in Coronary Bifurcation Lesions.
|
N/A | |
Not yet recruiting |
NCT06032572 -
Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE)
|
N/A | |
Recruiting |
NCT04242134 -
Drug-coating Balloon Angioplasties for True Coronary Bifurcation Lesions
|
N/A | |
Recruiting |
NCT05308719 -
Nasal Oxygen Therapy After Cardiac Surgery
|
N/A | |
Completed |
NCT04556994 -
Phase 1 Cardiac Rehabilitation With and Without Lower Limb Paddling Effects in Post CABG Patients.
|
N/A | |
Recruiting |
NCT05846893 -
Drug-Coated Balloon vs. Drug-Eluting Stent for Clinical Outcomes in Patients With Large Coronary Artery Disease
|
N/A | |
Recruiting |
NCT06027788 -
CTSN Embolic Protection Trial
|
N/A | |
Recruiting |
NCT05023629 -
STunning After Balloon Occlusion
|
N/A | |
Completed |
NCT04941560 -
Assessing the Association Between Multi-dimension Facial Characteristics and Coronary Artery Diseases
|
||
Completed |
NCT04006288 -
Switching From DAPT to Dual Pathway Inhibition With Low-dose Rivaroxaban in Adjunct to Aspirin in Patients With Coronary Artery Disease
|
Phase 4 | |
Completed |
NCT01860274 -
Meshed Vein Graft Patency Trial - VEST
|
N/A | |
Recruiting |
NCT06174090 -
The Effect of Video Education on Pain, Anxiety and Knowledge Levels of Coronary Bypass Graft Surgery Patients
|
N/A | |
Completed |
NCT03968809 -
Role of Cardioflux in Predicting Coronary Artery Disease (CAD) Outcomes
|
||
Terminated |
NCT03959072 -
Cardiac Cath Lab Staff Radiation Exposure
|
||
Recruiting |
NCT05065073 -
Iso-Osmolar vs. Low-Osmolar Contrast Agents for Optical Coherence Tomography
|
Phase 4 | |
Recruiting |
NCT04566497 -
Assessment of Adverse Outcome in Asymptomatic Patients With Prior Coronary Revascularization Who Have a Systematic Stress Testing Strategy Or a Non-testing Strategy During Long-term Follow-up.
|
N/A | |
Completed |
NCT05096442 -
Compare the Safety and Efficacy of Genoss® DCB and SeQuent® Please NEO in Korean Patients With Coronary De Novo Lesions
|
N/A |