Clinical Trials Logo

Plaque, Atherosclerotic clinical trials

View clinical trials related to Plaque, Atherosclerotic.

Filter by:

NCT ID: NCT06387017 Recruiting - Lung Cancer Clinical Trials

Prospective Multicenter Cohort Study to Validate Four Groups of Biomarkers for Assessing Lung Cancer Risk Among Patients With Atheromatous Cardiovascular Disease in a Screening Pathway

BIOCEPTION
Start date: April 2, 2024
Phase: N/A
Study type: Interventional

Interventional study with minimal risks and constraints, with evaluation of the incidence of lung cancers by low-dose thoracic CT scan without injection of contrast medium, of the immunological, inflammatory and metabolic blood profile and of the microbiota; systematic proposal of smoking cessation for active smokers or assistance in maintaining cessation.

NCT ID: NCT06372925 Not yet recruiting - Clinical trials for Plaque, Atherosclerotic

Intravascular Imaging Study of the Effect of Inclisiran on Plaque in Patients With Acute Myocardial Infarction

V-ACCELERATE
Start date: July 23, 2024
Phase: Phase 4
Study type: Interventional

This study is to evaluate the effect of Inclisiran on coronary atherosclerosis using intravascular ultrasound (IVUS) and optical coherence tomography (OCT) in patients with acute myocardial infarction and elevated low-density lipoprotein cholesterol (LDL-C).

NCT ID: NCT06365502 Not yet recruiting - Clinical trials for Acute Coronary Syndrome (ACS)

Preventive Drug-coated Balloon Angioplasty in Vulnerable Atherosclerotic Plaque (RESTORE Trial)

Start date: April 2024
Phase: N/A
Study type: Interventional

The objective of this multicenter, prospective, open-label, controlled, randomized trial is to demonstrate the superiority of drug-coated balloon (DCB) treatment on non-flow limited vulnerable plaque as compared to guideline-directed medical therapy (GDMT) in improving clinical cardiovascular outcomes in patients with acute coronary syndrome.

NCT ID: NCT06337461 Recruiting - Clinical trials for Chronic Coronary Syndrome

Computational mOdelliNg of myoCardial pERfusion to Improve ouTcome Prediction Based on cOronary Artery Stenosis and Atherosclerotic Plaque Burden Assessment by Computed Tomography

CONCERTO
Start date: May 22, 2023
Phase:
Study type: Observational

Detection of coronary stenosis is of utmost importance in identifying vulnerable patients. The combined use of coronary computed tomography angiography at rest (CCTA) and stress myocardial computed tomography perfusion (stress-CTP) provides both anatomic and functional analysis of coronary artery disease (CAD) using a single imaging test. Stress-CTP evaluates myocardial perfusion by measuring myocardial blood flow (MBF) under pharmacologically induced stress conditions. The drawback is that stress-CTP requires additional scanning and administration of an intravenous stressor with an increase in radiation exposure and potential stressor-related side effects. The investigators recently patented a computational model that can reproduce MBF under stress conditions (Italian patent n. 102021000031475 Metodo implementato mediante computer per la simulazione del flusso sanguigno miocardico in condizioni di stress [Computational method for simulating myocardial blood flow in stress conditions], half owned by Centro Cardiologico Monzino, half by Politecnico di Milano). On top of this, CCTA can characterize plaque type and identify adverse plaque characteristics. Moreover, biomechanics analysis allows the study of luminal stenosis and stress within the plaque. Finally, radiomics, extracting quantitative features from medical images to create big data and identify novel imaging biomarkers, can be applied to improve the diagnostic accuracy of coronary plaques.

NCT ID: NCT06313645 Recruiting - Clinical trials for Coronary Artery Disease

Vascular Senescence and Atherosclerotic Plaque Vulnerability

VICTORIA
Start date: July 1, 2023
Phase:
Study type: Observational

Chronological aging significantly contributes to structural and functional alterations in the vasculature, making it a major risk factor for atherosclerotic disease and its acute thrombotic events. DNA damage, including telomeric, non-telomeric, and mitochondrial damage, is recognized as a key initiator of vascular aging and atherogenesis. There is abundant evidence indicating the presence of oxidative DNA lesions, telomere erosion, and mitochondrial DNA damage in both experimental and human plaques, as well as in the peripheral cells of atherosclerotic patients. It is increasingly evident that genomic instability activates signaling pathways that lead to a multitude of pathophysiological cellular and molecular changes. These changes promote inflammation, apoptosis, autophagy, and ultimately, cellular senescence, accompanied by the "senescence-associated secretory phenotype" (SASP). However, the precise mechanisms linking the DNA damage response (DDR) to senescence, SASP in vascular cells, and the pathogenesis of atherosclerosis and vulnerable atheroma are yet to be fully understood. Additional research is needed to delineate the underlying mechanisms through which mitochondrial dysfunction influences telomere length and vice versa, and how their interaction contributes to the vascular aging process. Progress in this area has the potential to uncover therapeutic targets and novel, more precise diagnostic, and prognostic indicators. The objectives of the VICTORIA study are to examine the levels of aging-related non-coding RNA deregulation (specifically lncRNA TERRA and mitomiR) and peripheral markers of cell aging (including telomere length and mitochondrial DNA content) across the various spectra of angina pectoris (stable angina, unstable angina, NSTEMI, and STEMI). Additionally, the study aims to determine whether these markers are correlated with vulnerable plaque characteristics and major adverse cardiovascular events.

NCT ID: NCT06305559 Not yet recruiting - Clinical trials for Coronary Artery Disease

A CCTA Imaging Trial to Evaluate the Effect of Obicetrapib/Ezetimibe on Coronary Plaque

REMBRANDT
Start date: March 2024
Phase: Phase 3
Study type: Interventional

This placebo-controlled, double-blind, randomized, Phase 3 study is being conducted in adult participants with high-risk atherosclerotic cardiovascular disease (ASCVD) who are not adequately controlled by their maximally tolerated lipid-modifying therapy, to assess the impact of the obicetrapib 10 mg + ezetimibe 10 mg FDC daily on coronary plaque and inflammation characteristics, evaluated using cardiovascular computed tomography angiography (CCTA).

NCT ID: NCT06280976 Recruiting - Clinical trials for Coronary Artery Disease

Aggressive Risk-Prevention Therapies for Coronary Atherosclerotic Plaque (ART-CAP)

ARTCAP
Start date: March 1, 2024
Phase: Phase 4
Study type: Interventional

The purpose of this study is to evaluate the role of coronary CT angiogram (CCTA) as a superior guide for the assessment of coronary artery plaque and guiding treatment decisions. The investigators also assess the impact of preventive cardiovascular drugs on the plaque to improve patient outcomes. Participants aged 18-80 years, at intermediate or high-risk for coronary artery disease, with non-obstructive plaque on initial CCTA, will be enrolled in this study. They will be randomized into Standard of Care (SOC) vs. Aggressive Therapy (AT) groups. Both groups will undergo dietary and lifestyle interventions. Follow-up will consist of blood tests and clinic visits at baseline, 9 months, and 18 months. The second CCTA will be performed at 18 months to assess the change in plaque burden, characteristics, ischemia and pericoronary/epicardial fat.

NCT ID: NCT06275399 Recruiting - Atherosclerosis Clinical Trials

Comprehensive Assessment of Morphometric, Functional, Biomechanical and Biological Interactions Between Atherosclerotic Plaque and Platelets Within the Stenosed Coronary Artery

INTERFORCE
Start date: July 21, 2023
Phase:
Study type: Observational [Patient Registry]

The main objective of the present study is to verify, in vivo, whether shear forces computed solely based on coronary angiography and computational fluid dynamics (CFD) techniques are associated with the biomarkers indicating the prothrombotic tendency of circulating blood in situ - distally and proximally to the coronary stenosis. The study will prospectively assess the relationship between i) the value and distribution of shear rate and shear stress (SS) estimated using three-dimensional angiography and CFD techniques, and ii) atherosclerotic plaque characteristics as assessed by optical coherence tomography (OCT), iii) functional parameters of diseased vessels assessed by vessel fractional flow reserve (vFFR), and iv) in situ platelet activation, as expressed by platelet-derived microvesicles (pMVs) and small extracellular vesicles (sEVs), platelet aggregometry and other serum prothrombotic or inflammatory biomarkers sampled within the coronary artery.

NCT ID: NCT06214754 Completed - Clinical trials for Patients With Atherosclerotic Plaques in the Coronary Arteries That Require Excision

Efficacy and Safety of Intravascular High-pressure Cutting Balloon Catheters for PCI

Start date: June 16, 2023
Phase: N/A
Study type: Interventional

The purpose of this study was to evaluate the safety and efficacy of intravascular high-pressure cut balloon catheter compared to cut balloon catheter during PCI, and to support product registration and clinical application.

NCT ID: NCT06194526 Enrolling by invitation - Coronary Stenosis Clinical Trials

Whole Blood Transcriptomic Signal According to Coronary Atherosclerotic Plaque Burden Assessed by CT Angiography

CORPLAQ-TRAIT
Start date: September 19, 2023
Phase:
Study type: Observational

The present clinical study aims to identify transcriptomic patterns derived from whole blood samples related to coronary atherotic burden. Additionally, as a secondary analysis, the research team will explore the algorithm's ability to detect the presence of aortic disease and pro-inflammatory cardiometabolic alterations, such as hepatic steatosis and surrogate markers of coronary inflammation.