View clinical trials related to Tachycardia.
Filter by:In Western countries, every sixth person in their lifetime and 15,000 people in Finland have a new stroke each year. About every fourth stroke is based on cardiac embolism. Atrial fibrillation causes formation of thrombi in the left atrium with ensuing embolization in the cerebral and peripheral circulation. This study investigates the suitability of measurement techniques and new calculation methods used in sport/wellness technology for the screening and diagnosis of atrial fibrillation and other arrhythmias. New measurement technologies, the one-time ECG measurement and pulse wristband measurement, are studied for their characteristics, data quality and rhythm recognition. Identifying latent arrhythmias with new self-monitoring technologies can significantly reduce the number of strokes (the latent arrhythmias causes about 25% of strokes). The research will be accomplished in cooperation with the Kuopio University Hospital Emergency Department, the Heart Center, the Department of Applied Physics of the University of Eastern Finland and Heart2Save Ltd. The results of the research project will be published in the scientific journals of medicine and medical technology and will be presented at scientific conferences of the respective fields. The research results of the project can be utilized by all companies in the medical technology industry, in particular companies that produce ECG measuring instruments and companies that produce rhythm recognition software.
Atrial fibrillation is the most common arrhythmia but can be treated by a catheter procedure where specialized wires (so-called catheters) are inserted in the left upper heart chamber. This requires crossing the wall between the right and left atrium with a long needle (a so-called transseptal puncture or TSP). This is typically done using x-ray guidance or echo to check if the needle is in the right position. The investigators developed a method to do the TSP without x-rays using a specialized needle that can be also shown as a little icon on the 3D electroanatomical mapping system (CARTO).3D mapping systems are routinely used to track the location of the catheters in cath labs worldwide, but the position of the needle was not tracked yet. The investigators seek to demonstrate that these procedures can be carried out safely, successfully and in a reproducible fashion without any radiation by taking advantage of "faking" the isolated tip of the needle as a catheter on the 3D mapping system. The results will be compared with historic procedures done by the same operator in the years 2012-2017.
To compare the efficacy and safety of substrate-based radiofrequency catheter ablation vs. antiarrhythmic drug therapy in patients with ischemic cardiomyopathy and scar-related sustained monomorphic ventricular tachycardia.
The aim of this study is to quantify and characterize the outcomes of radiofrequency (RF) ablation after, and the utility of electroanatomical mapping with the Advisor™ HD Grid Mapping Catheter, Sensor Enabled™ (hereafter called "HD Grid") and EnSite Precision™ Cardiac Mapping System (SV 2.2 or higher, hereafter called "EnSite Precision") with HD Wave Solution™ voltage mapping (hereafter called "HD Wave Solution") in subjects with persistent atrial fibrillation (PersAF) or ventricular tachycardia (VT) in real-world clinical settings.
This study will compare the reliability and timeliness in data transmission of the Abbott Confirm Rx™ loop recorder with the Medtronic Reveal LINQ™ loop recorder.
The Physiologic Pacing Registry is a prospective, observational, multi-center registry performed to gain a broader understanding of 1) physiologic pacing implant and follow-up workflows, including pacing and sensing measurements and 2) the clinical utility in creating a 3-dimensional electro-anatomical map of cardiac structures prior to physiologic pacing device implants based on the clinical site's routine care.
Ventricular tachycardia (VT) contributes to over 350,000 sudden deaths each year in the US. Malignant VTs involve an electrical "short circuit" in the heart, formed by narrow channels of surviving tissue inside myocardial scar. An important treatment is to use catheter ablation to "block" the channel that forms the circuit. Effective ablation requires imaging guidance to visualize the VT circuit relative to scar structures in 3D. Unfortunately, with conventional catheter mapping, up to 90% of the VT circuits are too short-lived to be mapped. For the 10% "mappable" VTs, their data are only available during ablation and limited to one ventricular surface. This inadequacy of functional VT data largely limits the knowledge about scar-related VT and ablation strategies, and reduces the ability of clinicians to identify ablation targets and assess ablation outcome. The central hypothesis of this proposal is that functional VT data, integrated with CT or MRI scar data in 3D, can improve VT ablation efficacy with pre-procedural identification of ablation targets and post-procedural mechanistic elucidation of ablation failure. This research builds on the rapidly increasing clinical interest in electrocardiographic imaging (ECGi), an emerging technique that obtains cardiac electrical activity through inverse reconstructions from ECGs. The specific objective is to push the boundary of ECGi to provide - as a conjunction to intra-procedural catheter mapping - pre-ablation and post-ablation imaging of functional VT circuits integrated with 3D scar structure.
People with POTS, autoimmune autonomic neuropathy (AAN), pure autonomic failure (PAF), SFN and Ehlers Danlos Syndrome (EDS) do not only suffer from orthostatic symptoms such as dizziness, headache, neck pain, blurred vision or (pre-) syncope. They also experience deficits in attention and concentration (more precisely deficits in selective perspective, operating speed, executive functions and memory performance) mainly in upright position. Only few studies concerning cognitive impairment in autonomic neuropathies, their frequency, aetiology and therapy exist. Many patients concerned, especially with POTS, report attention deficits and "brain fog" with problems in their everyday life and work, predominantly in upright posture. Specific symptomatic or medical therapies do not exist. Medical treatment with Modafinil is discussed and part of a current study at Vanderbilt Autonomic Dysfunction Centre (1-5). The investigators want to investigate if problems of concentration, attention and/or cognitive dysfunction exist in people with POTS, AAN, SFN and EDS compared to healthy controls (HC). Thus the investigators use detailed clinical, autonomic and neuropsychological tests in different body positions (lying, sitting and standing) as also acute therapy (leg crossing).
Myalgic encephalomyelitis/Chronic fatigue syndrome (ME/CFS), otherwise known as Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME), is an under-recognized disorder whose cause is not yet understood. Suggested theories behind the pathophysiology of this condition include autoimmune causes, an inciting viral illness, and a dysfunctional autonomic nervous system caused by a small fiber polyneuropathy. Symptoms include fatigue, cognitive impairments, gastrointestinal changes, exertional dyspnea, and post-exertional malaise. The latter two symptoms are caused in part by abnormal cardiopulmonary hemodynamics during exercise thought to be due to a small fiber polyneuropathy. This manifests as low biventricular filling pressures throughout exercise seen in patients undergoing an invasive cardiopulmonary exercise test (iCPET) along with small nerve fiber atrophy seen on skin biopsy. After diagnosis, patients are often treated with pyridostigmine (off-label use of this medication) to enhance cholinergic stimulation of norepinephrine release at the post-ganglionic synapse. This is thought to improve venoconstriction at the site of exercising muscles, leading to improved return of blood to the heart and increasing filling of the heart to more appropriate levels during peak exercise. Retrospective studies have shown that noninvasive measurements of exercise capacity, such as oxygen uptake, end-tidal carbon dioxide, and ventilatory efficiency, improve after treatment with pyridostigmine. To date, there are no studies that assess invasive hemodynamics after pyridostigmine administration. It is estimated that four million people suffer from ME/CFS worldwide, a number that is thought to be a gross underestimate of disease prevalence. However, despite its potential for debilitating symptoms, loss of productivity, and worldwide burden, the pathophysiology behind ME/CFS remains unknown and its treatment unclear. By evaluating the exercise response to cholinergic stimulation, this study will shed further light on the link between the autonomic nervous system and cardiopulmonary hemodynamics, potentially leading to new therapeutic targets.
Subjects will be consented to wear the CoVa-2 monitoring system prior to (baseline), during, and after an Electrophysiology Procedure (EP). During this time, the system will measure the following parameters from subjects: heart rate (HR), Heart Rate Variability (HRV), respiration rate (RR), and Cardiac Output (CO). Data will be retrospectively analyzed to determine if the system effectively operates under these conditions, and can effectively monitor subjects and allow them to be discharged early from the hospital. Subjects will not be measured while transferred in and out of the operating room. Approximate sample size is 20 subjects.