Stroke Clinical Trial
— EEG-rTMSOfficial title:
Examination of Changes in Quantitative EEG Parameters Based on Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment in Patients With Post Stroke
Quantitative EEG (qEEG) has been used as an effective tool in the diagnosis and prognosis of brain-related diseases. In the literature, a variety of qEEG parameters have been proven informative in the prognosis of stroke. In addition, it has been demonstrated that changes in certain qEEG parameters during traditional/task-specific rehabilitation approaches are correlated with clinical outcomes of functional motor recovery. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a non-invasive and therapeutic treatment used to accelerate and enhance the recovery process of motor function in stroke patients. Many studies have reported that inhibiting contralesional rTMS may have positive effects in stroke patients with severe upper extremity motor impairment. In this context, the aim of the proposed study is to investigate whether there is a correlation between the change in qEEG parameters and the improvement of motor functions associated with rTMS treatment and to provide an electrophysiological prognostic biomarker of inhibiting contralesional rTMS for stroke patients.
Status | Recruiting |
Enrollment | 50 |
Est. completion date | April 15, 2024 |
Est. primary completion date | October 15, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Older than age of 18 years. - Presence of ischemic or hemorrhagic stroke confirmed by MRI. - Having a stroke for the first time. - Patients who agreed to participate by signing the informed consent form. Exclusion Criteria: - Presence of a clinical condition (metallic implant, cardiac or brain pace, claustrophobia, head trauma, cranial operation history) that may constitute a contraindication to repetitive transcranial magnetic stimulation intervention. - Presence of malignancy or systemic rheumatic disease - Pregnancy or breastfeeding - Non-stroke disease or lesion affecting the sensorimotor system - Alcohol or drug addiction - Presence of pump/shunt - Presence of severe cognitive impairment - Presence of >3 spasticity in the upper extremity defined according to the Modified Ashworth Scale - History of psychiatric illness such as major depression/personality disorders - History of epilepsy or taking medication due to epilepsy - Diagnosed with dementia - Received rTMS intervention before |
Country | Name | City | State |
---|---|---|---|
Turkey | Izmir Katip Celebi University | Izmir | Cigli |
Lead Sponsor | Collaborator |
---|---|
Izmir Katip Celebi University | The Scientific and Technological Research Council of Turkey |
Turkey,
Alekseichuk I, Mantell K, Shirinpour S, Opitz A. Comparative modeling of transcranial magnetic and electric stimulation in mouse, monkey, and human. Neuroimage. 2019 Jul 1;194:136-148. doi: 10.1016/j.neuroimage.2019.03.044. Epub 2019 Mar 22. — View Citation
Bembenek JP, Kurczych K, Karli Nski M, Czlonkowska A. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke - a systematic review of the literature. Funct Neurol. 2012 Apr-Jun;27(2):79-84. — View Citation
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206-7. doi: 10.1093/ptj/67.2.206. — View Citation
Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015 Dec;78(6):848-59. doi: 10.1002/ana.24472. Epub 2015 Nov 17. — View Citation
Claflin ES, Krishnan C, Khot SP. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist. 2015 Apr;5(2):77-88. doi: 10.1177/1941874414561023. — View Citation
Conforto AB, Anjos SM, Saposnik G, Mello EA, Nagaya EM, Santos W Jr, Ferreiro KN, Melo ES, Reis FI, Scaff M, Cohen LG. Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. J Neurol. 2012 Jul;259(7):1399-405. doi: 10.1007/s00415-011-6364-7. Epub 2011 Dec 16. — View Citation
Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012 Apr;26(4):291-313. doi: 10.1177/0269215511420305. Epub 2011 Oct 24. — View Citation
Finnigan S, Wong A, Read S. Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin Neurophysiol. 2016 Feb;127(2):1452-1459. doi: 10.1016/j.clinph.2015.07.014. Epub 2015 Jul 22. — View Citation
Finnigan SP, Rose SE, Walsh M, Griffin M, Janke AL, McMahon KL, Gillies R, Strudwick MW, Pettigrew CM, Semple J, Brown J, Brown P, Chalk JB. Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke. 2004 Apr;35(4):899-903. doi: 10.1161/01.STR.0000122622.73916.d2. Epub 2004 Mar 4. — View Citation
Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31. — View Citation
Griskova I, Ruksenas O, Dapsys K, Herpertz S, Hoppner J. The effects of 10 Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects. Neurosci Lett. 2007 May 29;419(2):162-7. doi: 10.1016/j.neulet.2007.04.030. Epub 2007 Apr 18. — View Citation
Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003 Mar;2(3):145-56. doi: 10.1016/s1474-4422(03)00321-1. — View Citation
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009 Aug;8(8):741-54. doi: 10.1016/S1474-4422(09)70150-4. — View Citation
Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair. 2009 Sep;23(7):641-56. doi: 10.1177/1545968309336661. Epub 2009 Jun 16. — View Citation
Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9:527-65. doi: 10.1146/annurev.bioeng.9.061206.133100. — View Citation
* Note: There are 15 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in The Fugl-Meyer Assessment (FMA) | The Fugl-Meyer Assessment (FMA) is a clinical stroke-specific scale that an assesment sensorimotor impairment. It is a powerful index applied clinically and also in research to identify the stroke severity, determine the motor recovery and to plan the rTMS interventions. | (1) Baseline, (2) At the end of the last session of the intervention (immediately after the 10th session, each session is 1 day) | |
Secondary | Change in Modified Ashworth Scale | The modified Ashworth Scale is a clinical index that used for assessment of muscle tone and evaluates the resistance occuring during passive range of motion. | (1) Baseline, (2) At the end of the last session of the intervention (immediately after the 10th session, each session is 1 day) | |
Secondary | Change in Brunnstrom Stages of Stroke Recovery | The Brunnstrom stages are a clinical scale that describe the changes in the ability of movement and the development and reorganization of brain at the post-stroke stage. | (1) Baseline, (2) At the end of the last session of the intervention (immediately after the 10th session, each session is 1 day) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Recruiting |
NCT05621980 -
Finger Movement Training After Stroke
|
N/A |