View clinical trials related to Proteomics.
Filter by:Physical exercise induces numerous changes in the body in a complex signalling network caused by or in response to increased metabolic activity of contracting skeletal muscles. The application of omics analytical techniques such as proteomics and metabolomics in the field of sport allows us to understand how the human body responds to exercise and how sports results can be improved by optimising nutrition and training. Both omics techniques offer a quantitative measurement of the metabolic profiles associated with exercise and are able to identify metabolic signatures of athletes from different sports disciplines. Basketball is a high-intensity exercise modality interspersed with low-intensity. The performance requirements of basketball include aerobic and anaerobic metabolism, with anaerobic metabolism being considered the main energy system. Therefore, basketball players need great athletic ability to produce a successful performance during competition. For optimal sports performance it is important to adjust the training load, i.e. the degree of effort that the player can withstand in a single training session. Coaches require effective and objective load monitoring tools that allow them to make decisions about training plans based on the needs of each player. Microsampling systems emerge as an alternative to venipuncture by facilitating self-sampling, which can be carried out outside healthcare centres, in a comfortable and precise way from a small finger prick that the user can perform. These systems are less expensive and can be effective in measuring the levels of glucose metabolism products, such as lactate, through the application of metabolomics and proteomics. On the other hand, the use of non-invasive methods of measuring lactate levels is becoming increasingly popular in sports medicine. The use of saliva as an alternative fluid to the blood shows promise for identifying the concentrations of metabolites that occur during and after sports training.
The goal of this clinical trial is to learn about the molecular pathways associated with the benefit of a regular exercise program in patients with high blood pressure and who don't already participate in regular exercise. The main question it aims to answer is to identify protein signatures associated with the benefits of a cardiac rehabilitation exercise program. The trial will enroll 42 participants, who will be randomized to a 12 week cardiac rehabilitation exercise program versus control arm and asked to participate in the following at the beginning and end of study: - Cardiopulmonary exercise test (CPET) - Echocardiogram - Physical function test - 6-minute walk test - Hand grip strength - Quality of life questionnaire - Blood draws Researchers will compare results between those who do and don't participate in the exercise program.
Renal sympathetic nervous activity plays a crucial role in the development and maintenance of hypertension (HTN). Renal denervation (RDN) is a minimally invasive catheter-based treatment using mainly radiofrequency or ultrasound energy to selectively disrupt the sympathetic renal nerves. RDN has experienced rises and falls during its development as a treatment option for HTN in humans. Latest well-designed sham-controlled randomised trials with improved methodology confirmed significant blood pressure (BP) reduction in both office and 24-hour ambulatory BP. Although the safety of RDN procedures seems favourable thus, the rate of BP response to the procedure is variable, with response rates reported in the range between 60% and 70%. It is of great importance to identify biomarkers able to reliably predict subjects who would benefit from this treatment, in order to achieve better therapeutic results. Proteomics is the study of the full complement of proteins produced or modified by a biological system (cell, tissue, organ, biological fluid, or organism). Proteomic analysis is used in different research settings to understand pathogenicity mechanisms and emerge biomarkers with predictive role in diagnosis and treatment of different diseases. The main purpose of this study is to investigate the potential predictive role of the urine proteomics in BP response of patients undergoing RDN. This hypothesis may lead to the emergence of biomarkers in urine of hypertensive patients, in order to optimally select those who will undergo RDN. This is a prospective observational study enrolling hypertensive patients, aged 18-80 years who will proceed in RDN as participants of randomized control trials. During baseline evaluation HTN diagnosis will be confirmed by office blood pressure measurement (OBPM) and ambulatory blood pressure measurement (ABPM), while urine sample will be collected before RDN for proteomic analysis. The participants will have a follow-up visit in 3 months since baseline procedure for office blood pressure (OBP) and ambulatory blood pressure (ABP) measurements. A cut off value of 5mmHg reduction in ABP or/and 10mmHg reduction in office blood pressure (OBP) on 3 months visit will be set to categorize the patients to responders or non-responders after RDN. The qualitative and quantitative differences of proteins between the two groups of patients will be investigated, based on proteomic analysis results, in order to determine specific urine proteins with predictive role in blood pressure response. The study results are expected to determine the predictive role of urine proteomics in optimal selection of hypertensive patients who will undergo renal denervation.
Through the MALDI-TOF MS platform, explore the proteomics and peptidomics differences of fasting serum/plasma and urine between non pregnant people with normal glucose tolerance test and prediabetes /diabetes patients, pregnant people with normal glucose tolerance test and pregnant diabetes patients respectively; To explore the role of its proteomics and peptidomics differences in the diagnosis of prediabetes and diabetes, and to establish a new method of differential diagnosis by using the omics data and key characteristic peaks to find potential new diagnostic markers.
Muscle mass loss is a common adverse effect of cancer. Muscle mass loss occurs with or without reduction in body weight. Cancer cachexia (CC) is the involuntary loss of body weight of >5% within 6 months and it occurs in 50-80% of patients with metastatic cancer. It is estimated that CC is a direct cause of up to 30% of all cancer-related deaths. No treatment currently is available to prevent CC, likely because the chemical reactions that causes of this devastating phenomenon in unknown. No treatment currently is available to prevent muscle mass loss in patients with cancer but is urgently needed as the reduced muscle mass and function is associated with impaired physical function, reduced tolerance to anticancer therapy, poor quality of life (QoL), and reduced survival. There is evidence of an interdependence between informal caregiver (e.g. spouse) and patient QoL. Thus, identifying caregiver distress and needs can potentially benefit QoL for patients with cancer cachexia. Despite the enormous impact on disease outcomes, it is not known why the loss of muscle mass and function occurs and very few studies have investigated the underlying molecular causes in humans. In particular, there is a severe lack of studies that have obtained human skeletal muscle and adipose tissue sample material. Such reference sample materials will be invaluable to obtaining in-depth molecular information about the underlying molecular causes of the involuntary but common muscle mass and fat mass loss in cancer. At a whole body level, cancer cachexia is associated with reduced sensitivity to the hormone insulin, high levels of lipids in the blood, and inflammation. Within the skeletal muscle, the muscle mass loss is associated with elevated protein breakdown and reduced protein build-up while emerging, yet, limited data also suggest malfunction of the power plants of the cells called mitochondrions. The role of malnutrition and how it contributes to weight loss is understood only to the extent of the observed loss of appetite and the reduced food intake because of pain, nausea, candidiasis of the mouth, and breathlessness. Evidence is increasing that the environment of the intestinal system could be implicated in cancer cachexia, yet, the possible effect of cancer and the cancer treatment on the intestinal environment is not understood. Thus, large and as yet poorly understood details of this syndrome precede a later weight loss. Exercise training could help restore muscle function and how the chemical reactions works in cancer. In healthy people, and patients with diabetes, cardiovascular disease, and obesity exercise potently improves health. Exercise has been thought to slow down the unwanted effects of cancer cachexia by changing the reactions mentioned above. Thus, there is a tremendous gap in our knowledge of how and if exercise can restore the cells power plants function, muscle mass, strength, and hormone sensitivity in human cachexic skeletal muscle. Tackling that problem and examining potential mechanisms, will enable us to harness the benefits of exercise for optimizing the treatment of patients with cancer. The data will provide novel clinical knowledge on cachexia in cancer and therefore addressing a fundamental societal problem. Three specific aims will be addressed in corresponding work packages (WPs): - investigate the involvement of hormone sensitivity of insulin and measure the chemical reactions between the cells in patients with lung cancer (NSCLC) and describe the physical performance and measure amount of e.g. muscles and adipose tissue across the 1st type of cancer treatment and understand how that is related to the disease and how patients and informal caregiver feel (WP1). - find changes in the chemical reactions in skeletal muscle, adipose tissue (AT), and blood samples in these patients, to understand how to predict how the disease will develop (WP2). - measure changes of skeletal muscle tissue in response to exercise and see if it might reverse the hormone insensitivity and improve muscle signaling and function (WP3). The investigators believe that: - the majority of patients with advanced lung cancer, at the time of diagnosis already are in a cachectic state, where they lose appetite, and have hormonal changes, and an overall altered chemical actions between the cells affecting both muscle mass and AT. The investigators propose that all this can predict how the disease will progress, and how patient- and informal caregiver fell and how they rate their quality of life. - lung cancer and the treatment thereof is linked with changes in the blood, the muscle tissues, and the adipose tissues, especially in patients experiencing cachexia, that could be targeted to develop new treatment. - exercise can restore the muscles and improve insulin sensitivity and improve the function of the cells power plants in patients with lung cancer-associated muscle problems.
Sequence I (Retrospective study: proteomic analysis of pathological specimens and information collection of previous patients with pancreatic cancer) Sequence 2 (Non-interventional prospective study, sample and information collection in patients with pancreatic cancer) Sequence 3 (Non-intervention study, healthy subjects sample and information collection)
Microvascular inflammation, the hallmark histological criteria of antibody-mediated rejection in kidney transplantation, remains an issue in routine practice, due to a lack of reproducibility in its recognition by pathologists and an incomplete comprehension of its pathophysiology, leading to a poor treatment efficacy. The main objective of this study is to assess the performances of tissue proteic signatures designed for the diagnosis of microvascular inflammation in kidney transplantation, from formalin-fixed and paraffin-embedded (FFPE) allograft biopsies analyzed by mass spectrometry-based proteomics.
Skeletal muscle plays several different roles in the promotion and maintenance of health and well-being. The loss of muscle mass that occurs with aging, chronic muscle wasting diseases, and physical inactivity puts people at an increased risk of frailty and becoming insulin resistant, and therefore imposes a significant burden on health care spending. Resistance exercise participation has proven particularly effective for increasing muscle mass and strength. This effectiveness can be used by health care practitioners in a rehabilitation setting to promote the recovery of individuals who have undergone involuntary periods of muscular unloading (i.e. limb immobilization caused by a sports injury or reconstructive surgery). However, there is large variability in the amount of muscle mass and strength that people gain following participation in resistance exercise. Some individuals fail to increase the size of their muscle (low responders) whereas others show vary large increases in muscle size (high responders) in response to the same resistance training program. People also show differences in the amount of muscle tissue they lose when they have a limb immobilized. To circumvent variability across individuals, the investigators utilized a within-person paired Hypertrophy and Atrophy ('HYPAT') strategy that reduced response heterogeneity by ~40% (Available at: https://ssrn.com/abstract=3445673). Specifically, one leg performed resistance training for 10 weeks to induce hypertrophy, whereas the other leg underwent single-leg immobilization for 2 weeks to induce atrophy. The primary goal of the study will be to gain insight into the molecular responses to an acute period of single-leg immobilization and resistance exercise (8 days). The investigators will use an integrated systems biology approach to monitor the individual rates of over one hundred different muscle proteins.
The aim of the present study is to investigate a targeted proteomic analysis in plasma of children - of Greek origin- with type 1 diabetes (DT1) and its correlation with the electrophysiological findings that accompany diabetic peripheral neuropathy. Diabetic neuropathy is the most frequent chronic complication in adults with DT1 and rarely appears in childhood. Nevertheless, cases of acute mononeuritis have been described at the time of diagnosis of DT1. According to recent reports several biomarkers, including proteomic analysis, have been proposed for the early detection of peripheral neuropathy in children and young adults with T1DM. In the present study the researchers will attempt to investigate the role of biomarkers with targeted proteomic analysis in the plasma of children with DT1 in combination with an electrophysiological study, which includes a nerve conduction study, to detect early diabetic peripheral neuropathy, before the appearance of clinical manifestations.
Retrospectively collected 400 cases of clinical data and pathological paraffin specimens of osteosarcoma, chondrosarcoma (control) and endogenous chondroma (control) in our hospital from 2008 to 2014, combined with high-pressure cycle-satellite scanning mass spectrometry (PCT-SWATH) Molecular typing of osteosarcoma and prediction of targeted therapy, the establishment of a new molecular classification based on proteomics for osteosarcoma to predict the chemotherapy response and recurrence risk of osteosarcoma. Clinical osteosarcoma patients include as many types as possible: pre-chemotherapy, post-chemotherapy, recurrence, and metastasis. The study did not involve vulnerable groups, and it was taken as a postoperative wax specimen for patients, which had no health, life and other effects on patients. Study application exemption from informed consent.