Clinical Trials Logo

Clinical Trial Summary

Physical exercise induces numerous changes in the body in a complex signalling network caused by or in response to increased metabolic activity of contracting skeletal muscles. The application of omics analytical techniques such as proteomics and metabolomics in the field of sport allows us to understand how the human body responds to exercise and how sports results can be improved by optimising nutrition and training. Both omics techniques offer a quantitative measurement of the metabolic profiles associated with exercise and are able to identify metabolic signatures of athletes from different sports disciplines. Basketball is a high-intensity exercise modality interspersed with low-intensity. The performance requirements of basketball include aerobic and anaerobic metabolism, with anaerobic metabolism being considered the main energy system. Therefore, basketball players need great athletic ability to produce a successful performance during competition. For optimal sports performance it is important to adjust the training load, i.e. the degree of effort that the player can withstand in a single training session. Coaches require effective and objective load monitoring tools that allow them to make decisions about training plans based on the needs of each player. Microsampling systems emerge as an alternative to venipuncture by facilitating self-sampling, which can be carried out outside healthcare centres, in a comfortable and precise way from a small finger prick that the user can perform. These systems are less expensive and can be effective in measuring the levels of glucose metabolism products, such as lactate, through the application of metabolomics and proteomics. On the other hand, the use of non-invasive methods of measuring lactate levels is becoming increasingly popular in sports medicine. The use of saliva as an alternative fluid to the blood shows promise for identifying the concentrations of metabolites that occur during and after sports training.


Clinical Trial Description

The study hypothesizes that the use of minimally invasive microsampling systems, and subsequent application of metabolomics and proteomics, will allow the detection of differences in the levels of lactate and other metabolites and proteins produced by the greater energy demand of the musculoskeletal system after a single collective training on the court, in federated basketball players. In addition, lactate levels will be correlated with the subjective sensation of perceived exertion. The main objective of the study is to apply metabolomics techniques to analyze lactate levels in capillary blood samples collected by a dried blood spot (DBS) microsampling device, and to study their correlation with the subjective sensation of perceived effort in federated basketball players before and after performing a single collective training session on the court. The secondary objectives of the study are to measure the change in lactate levels in capillary blood samples collected by a DBS device, and in saliva samples collected by a collector, before and after performing a single collective training on the court. In addition, in these samples, the change in the levels of other metabolomic and proteomic markers related to energy, lipid and amino acid metabolism will be measured. The correlation between salivary and blood lactate levels will also be studied; subjective sensation of perceived exertion and salivary lactate levels; the subjective sensation of perceived exertion and the levels of other metabolomic and proteomic markers will be also studied. A single-group quasi-experimental (or pre-post) study will be carried out on 70 basketball players between the ages of 18 and 40. Each participant will attend 2 visits to the sports facilities of their basketball club: - A recruitment and pre-selection visit (to check the eligibility criteria and sign the informed consent). If the inclusion criteria are met, will be scheduled to: - A single study visit on the same day agreed for training. The main variable of the study is the correlation between lactate levels, measured in capillary blood pre- and post-training, and the subjective sensation of perceived effort. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06365320
Study type Interventional
Source Fundació Eurecat
Contact Nuria Canela, PhD
Phone +34977300431
Email nuria.canela@eurecat.org
Status Not yet recruiting
Phase N/A
Start date April 2024
Completion date July 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04807998 - Risk Factors for Pediatric Emergence Agitation and Analysis of Serum or Urine Metabonomics in Children With Agitation
Recruiting NCT03810768 - Metabolomics Study on Postoperative Intensive Care Acquired Muscle Weakness
Recruiting NCT05582824 - Lactate Metabolism in the Hypoperfused Critically Ill
Recruiting NCT06094439 - Targeted Metabolomics and Spent Embryo Culture Medium
Not yet recruiting NCT05834426 - Omic Technologies Applied to the Study of B-cell Lymphoma for the Discovery of Diagnostic and Prognosis Biomarkers
Terminated NCT02948114 - The Effect of Feeding Infant Formula Containing Prebiotics and/or Probiotics N/A
Recruiting NCT05891886 - Supplemental Oxygen in Pulmonary Embolism (SO-PE) Early Phase 1
Completed NCT04042519 - The Research of Metabolomics on COPD
Completed NCT03450746 - Metabolic and Physiological Changes During Minor Orthopaedic Surgery in Otherwise Healthy Patients
Recruiting NCT03742856 - A Multi-omics Study of Epithelial Ovarian Cancer
Recruiting NCT03742843 - A Multi-omics Study of Adenomyosis
Terminated NCT02948192 - The Reproductive Microbiome & Perinatal Health Outcomes
Recruiting NCT05243173 - Biomarkers of Response to Systemic Treatments in FH-deficient RCC
Completed NCT02145572 - Metabolomic Profiling in Adolescents With Obesity and Diabetes
Active, not recruiting NCT04781036 - Foot-skin Microbiome and Metabolomics of Pitted Keratolysis N/A
Completed NCT04137042 - Metabolomics of Intraoperative Saline and Balanced Crystalloid Infusion N/A
Completed NCT03819959 - Metabolomics Study on Intensive Care Acquired Muscle Weakness in Polytrauma
Completed NCT01436383 - Oxidative Stress in Hypobaric Hypoxia N/A
Active, not recruiting NCT03137628 - Effect of General Anesthesia and Mechanical Ventilation on Plasma Metabolite in Patient With Colorectal Cancer Resection N/A
Recruiting NCT06102655 - Effect and Mechanism of Jiajian Guishen Formulation on Premature Ovarian Insufficiency Based on Metabolomics Early Phase 1