View clinical trials related to Pneumonia.
Filter by:The aim of this study is to generate evidence regarding organizing pneumonia in lung transplant recipients.
Respiratory syncytial virus (RSV) infection and bacterial co-infection are the most common causes of pneumonia. Currently, there is no vaccine available for RSV prevention, and the use of the antiviral medication ribavirin is not widely recommended for children. Therefore, the primary treatment approach follows the general protocol for pneumonia, and oxygen therapy is recommended for all cases of pneumonia with respiratory failure. However, in children, the treatment of RSV and bacterial pneumonia remains supportive to prevent bacterial co-infection and respiratory failure. Probiotics have emerged as promising and safe options for supporting the treatment of acute respiratory tract infections (ARTIs) and reducing dependence on antibiotics in recent years. In this study, investigators propose that the direct administration of probiotics through a nasal spray can offer rapid and effective symptomatic treatment for children with pneumonia who require oxygen therapy due to RSV and bacterial co-infections. The aim of the study is to evaluate the effectiveness of nasal-spraying probiotics containing spores of two bacterial strains, Bacillus subtilis and Bacillus clausii (LiveSpo Navax), in preventing and supporting the treatment of severe pneumonia in children (who require oxygen therapy) caused by RSV infection and bacterial co-infection. Study population: The sample size was 100, and the study was conducted at the Vietnam National Children's Hospital. Description of Study Intervention: All 100 eligible patients were randomly divided into two groups (n = 50/each): Patients in the Control group received routine treatment and were administered 0.9% NaCl physiological saline 3 times/day, while the patients in the Navax group received LiveSpo Navax 3 times/day in addition to the same standard of care treatment. The standard treatment regimen typically lasts for 5-7 days, but its duration can be extended based on the severity of the patient's respiratory failure. Study duration: 12 months.
The goal of this prospective multicentric study is to evaluate the presence of long-term pulmonary sequelae in patients who had required hospitalization for treating COVID-19 pneumonia, trough chest CT and pulmonary function tests (PFT). Secondly we would like to evaluate the possible correlation between the chest CT findings and pulmonary function tests pre-existing co-morbidities and type of therapy used during hospitalization.
The current study is an exploratory, phase IIa randomized clinical trial (RCT) aiming to evaluate if early presepsin increase coupled with early initiation of anakinra as an adjunct therapy to the standard-of-care treatment may improve outcomes of community-acquired pneumonia or hospital-acquired pneumonia.
Critically ill patients are at high risk of acquiring pneumonia during the time that they are mechanically ventilated. This is known as ventilator-associated pneumonia (VAP). VAP results in increased duration of mechanical ventilation, increased ICU and hospital stay, increased risk of death and increased health care costs. VAP occurs in 20% of patients and it is estimated that each case of VAP costs the health care system $10 to 15,000 Canadian. Because of its impact on patient outcomes and the health care system, VAP is regarded as an important patient safety issue and there is an urgent need for better prevention strategies. Invasive mechanical ventilation requires the passage of an endotracheal tube (ETT) through the pharynx which is frequently colonized with bacterial pathogens and a bio-film rapidly forms on the ETT. VAP results either from aspiration of contaminated oropharyngeal secretions or from aspiration of bacteria from the bio-film. In this project, the efficacy of a novel ETT coated with an antibiotic compound that has been shown to reduce the formation of bio-film and pathogen colonization will be tested. Preliminary evidence as to whether utilization of this novel ETT reduces the occurrence of VAP and improves patient outcomes will be obtained through the conduct of a pragmatic, prospective, longitudinal, interrupted time, cross-over implementation study.
Progressive destruction of the lungs is the main cause of shortened life expectancy in people with cystic fibrosis (pwCF). Inflammation and respiratory infections play a key role in CF lung disease. Previous studies have shown that an increase in inflammatory markers predicts structural lung damage. Close monitoring of pwCF is crucial to adequately provide optimal care. Pulmonary management for pwCF involves treating infections and exacerbations and promoting exercise and mucociliary clearance to slow or prevent structural lung damage. To evaluate the treatment and incite timely interventions it is important for the pulmonary physician to be well-informed about the condition of the lungs. The main monitoring tools in regular CF care are lung function, sputum cultures, symptom reporting and more recently imaging by chest computed tomography (CT-scan) or magnetic resonance imaging (MRI). Strangely enough, there are currently no monitoring tools used in clinics to measure inflammation in the lung, although this is a main factor for progressive lung disease. New highly effective modulator therapy (HEMT) such as elexacaftor/tezacaftor/ivacaftor [ETI, Kaftrio®] is transforming CF treatment, vastly improving lung function and reducing exacerbations. Initial CFTR modulators like ivacaftor and lumacaftor/ivacaftor also improved lung function and reduced exacerbations, but studies showed that lung inflammation was still present. The long-term impact of ETI and its effect on inflammation is not yet known. Thus, monitoring pwCF on HEMT may be different from before, as lung damage seen on chest CT will be less apparent and lung function will improve considerably, therefore not being adequate markers for subtle changes in the lungs. Thus, the focus of monitoring in the era of highly effective CFTR modulators needs to change preferably focusing on measuring lung inflammation. An ideal monitoring tool for lung inflammation in pwCF should be non-invasive, efficient, and provide accurate and sensitive results. Currently, sputum and BAL are the most common methods for assessing inflammation, but BAL is invasive and sputum may not always be available. Exhaled breath analysis by the electronic nose (eNose) or gas chromatography-mass spectrometry (GC-MS) of volatile organic compounds (VOCs) shows promise as a non-invasive monitoring tool. Other promising markers and techniques are inflammatory markers in the blood (cytokines and micro-RNA (miRNA)) and urine. Thus, the objective of this project is to design novel, minimally invasive monitoring techniques capable of identifying lung inflammation in pwCF undergoing highly effective CFTR modulator therapy (ETI) compared to those not using CFTR modulators. The efficacy of these innovative techniques will be evaluated and verified against inflammatory markers in sputum, spirometry, and validated symptom and quality of life scores.
The aim of this study is to determine whether the fasting duration required for patients after consuming oral jelly is comparable to that after consuming water, prior to elective surgery. International guidelines for perioperative fasting recommend abstaining from clear fluids for 2 hours to minimize the risk of regurgitation and aspiration pneumonia. However, there are no specific recommendations regarding the perioperative management of jelly consumption. Current understanding emphasizes the benefits of minimizing preoperative fasting time, including preventing dehydration and metabolic complications like ketoacidosis, as well as potentially enhancing patient satisfaction. Oral jelly consumption may offer advantages by improving preoperative hydration and providing some nutritional support prior to procedures. This crossover study will involve 25 adult volunteers. In the first phase, participants will be randomly assigned to either oral intake of water or jelly, followed by the opposite intervention in the second phase. Gastric content and volume will be assessed using gastric ultrasound.
To evaluate the performance of radiomics in differentiating Pneumocystis jirovecii pneumonia (PCP) from other types of pneumonia and to improve the diagnostic efficacy of non-invasive tests in non-HIV patients.
Reducing antibiotics prescription is still to date, the main goal in low respiratory tract infections (LRTI). Several studies have shown conflicting results on the impact of multiplex PCR as a point of care tool. Our experience has highlighted an impact on single room assignments during the winter season but not yet on antibiotics prescriptions. This project aims to evaluate a new multimodal algorithm including multiplex PCR at the point of care to reduce antibiotics prescription and therefore has the ability to have a positive impact on antibiotics resistance phenomenon.
This study aims to compare epidemiology, management of invasive ventilation and outcomes in critically ill patients with COVID-19 ARDS and ARDS from another pulmonary infection. The investigators will use individual patient data from four recently published large observational COVID-9 studies, including the 'Practice of VENTilation in COVID-19 patients' (PRoVENT-COVID) study, the 'Epidemiology of COVID-19 patients in the ICU' (EPICCoV) study, the 'SATI-COVID-19 - Clinical Characteristics and Outcomes of Patients With COVID-19 on Mechanical Ventilation in Argentina: a Prospective, Multicenter Cohort Study' and the CIBERESUCICOVID - Personalized Risk and Prognosis Factors and Follow-up at One Year of the Patients Hospitalized in the Spanish Intensive Care Units Infected with COVID -19' study. The investigators will use the individual patient data from ARDS patients with another pulmonary infection from the 'LUNG -SAFE - Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE' study and the 'ERICC - Epidemiology of Respiratory Insufficiency in Critical Care' study.