View clinical trials related to Pneumonia, Viral.
Filter by:Preliminary data support the effect of Nitric Oxide (NO) on improving the oxygenation in mechanically ventilated patients and spontaneously breathing patients with COVID-19. In vitro studies showed an antiviral effect of NO against SARS-coronavirus. The optimal therapeutic regimen of NO gas in spontaneously breathing hypoxemic patients with COVID-19 is not known. We hypothesize that high concentration inhaled NO with an adjunct of continuous low dose administration between the high concentration treatments can be safely administered in hypoxemic COVID-19 patients compared to the high dose treatment alone. Prolonged administration of NO gas may benefit the patients in terms of the severity of the clinical course and time to recovery. Together with a clinical effect on ventilation-perfusion matching, a prolonged regimen would allow also an increase in antiviral activity (dose and time-dependent).
Due to the limitations of COVID-19 treatment and in the absence of licensed antiviral for COVID-19, the historical choice of therapeutic convalescent plasma (CP) is considered especially against RNA viruses .It was known that convalescent plasma does not only neutralize the pathogens but provide passive immunomodulatory properties that allows the recipient to control the exaggerated inflammatory cascade. However, still there is a lack of understanding of the mechanism of action of CCP therapeutic components. Reports from open label trials and case series show that CCP is safe and might be effective in severe cases with COVID-19 . Therefore, the World health organisation (WHO) and Food and Drug Administration (FDA) issued guidelines for the CCP usage and standardised the donor selection , which was further supported by Emergency use Authorisation (EUA) . Therefore, the aim in the current study is to assess the effect of CCP on time to clinical improvement, hospital mortality and to evaluate the changes on oxygen saturation and laboratory markers (lymphocyte counts and C-reactive protein) compared with standard treatment alone in patients with moderate or severe COVID-19 disease.
The purpose of this open label, 2-phase, study is to obtain information on the safety of 80 ppm and the safety and efficacy of 150 ppm Nitric Oxide given in addition to the standard of care of patients with COVID-19 caused by SARS-CoV-2.
During COVID-19 epidemic, hydroxychloroquine was proposed and authorized as a possible key agent in the treatment of COVID-19 hospitalized pneumonia, including in France. Gautret et al. proposed the combination regimen with azithromycin. However only one study reported the interest of azithromycin alone. Retrospective study reporting the impact of the anti-infective agents used during the pandemic in a tertiary care hospital, using azithromycin with or without hydroxychloroquine.
This study will explore whether a daily supplement of glycine, a substance that has antiinflammatory, cytoprotective, and endothelium-protecting effects, can improve mortality, as well as clinical and biochemical parameters, in patients with severe COVID-19 who initiate mechanical ventilatory support.
Pneumonia is a recurrent element of COVID-19 infection, it is often associated with development of respiratory failure and patients frequently need various degrees of oxygen therapy up to non invasive ventilation (NIV-CPAP) and invasive mechanical ventilation (IMV). Main purpose of this study is to evaluate with non invasive clinical instruments (pletysmography, Diffusion lung capacity for carbon monoxide -DLCO-, six minute walking test and dyspnea scores) and radiological tools (chest X-ray and chest CT scan) the development of medium-to-long term pulmonary sequelae caused by SARS-CoV-2 pneumonia.
The study aims to evaluate MN-166 (ibudilast) in patients with COVID-19 who are at risk of developing acute respiratory distress syndrome. Subjects will be screened, randomly assigned to MN-166 or placebo groups, receive study drug on Days 1-7, and followed up on Day 14 and Day 28.
coronavirus disease 2019 related pneumonia is causing acute respiratory failure and this is the most common reason for ICU admission. We have several different way for respiratory support. HFNC is one of the new technics for oxygen support. Our main purpose to observe the effect of HFNC on coronavirus disease 2019 patients' ICU stay and mortality.
In light of the ongoing COVID-19 epidemic in Norway, it is paramount to develop and utilize clinical tools for assessing and risk stratifying patients with suspected coronary infection in the emergency departments. Diagnostic use of ultrasound in viral pneumonias, including COVID-19 has proved to be very useful. The use of ultrasound will assist in quick detection of lung pathology compatible with increasing severity of the COVID-19 disease. At the same time, the use of ultrasound diagnostics in the emergency department could improve logistics and reduce potential exposure of the corona virus to other health personnel. The purpose of the study is to assess whether ultrasound findings correlates with physical examination, labs, and other imaging diagnostics in patients with suspected or diagnosed COVID-19 disease, as well as assessing whether ultrasound diagnostics can assist in risk stratification. The project is conducted as a prospective multicenter study where ultrasound diagnostics will be performed on patients with suspected coronary infection in the emergency departments. Data collection takes place as part of the daily clinical evaluation of acute patients in the emergency departments. The project is planned to be completed towards the end of 2025.
Severe Acute Respiratory Syndrome (SARS) SARS-CoV-2, name of the Coronavirus Group of international Committee on taxonomy of viruses, is an emerging virus from the family of coronaviridae, responsible for the COVID-19 pandemic. This infection can progress to viral pneumonia, and in 3% of cases up to acute respiratory distress syndrome (ARDS) which conditions the prognosis of the disease. Due to its unusual clinical presentation with a risk of sudden deterioration on the 8th day as a result of possible hyperinflammatory response, the respiratory impairment of COVID is unique and many questions remain unanswered concerning its evolution once the acute phase has passed. Knowledge of the evolution of pulmonary involvement, particularly in patients requiring hospitalization, can help reduce the morbidity linked to the persistent abnormalities identified by establishing early therapeutic management. It can also provide a better understanding of the mechanisms of pulmonary involvement in the acute phase. Current data regarding the acute phase of COVID-19 suggest that persistent abnormalities remain distant from this infection at all levels of the respiratory system: gas exchange, perfusion, ventilatory mechanics, and interstitial lung disease. The main objective is to characterize persistent gas exchange anomalies 4 months after documented COVID-19 pneumonia, resulting in oxygen desaturation and requiring hospitalization.