Clinical Trials Logo

Pneumonia, Viral clinical trials

View clinical trials related to Pneumonia, Viral.

Filter by:

NCT ID: NCT04418531 Withdrawn - Clinical trials for Corona Virus Infection

Convalescent Antibodies Infusion in COVID 19 Patients

Start date: June 1, 2020
Phase: N/A
Study type: Interventional

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has become a major concern all over the world. Convalescent plasma or immunoglobulins have been used as a last resort to improve the survival rate of patients with SARS whose condition continued to deteriorate despite treatment with pulsed methylprednisolone. Moreover, several studies showed a shorter hospital stay and lower mortality in patients treated with convalescent plasma than those who were not treated with convalescent plasma. Evidence shows that convalescent plasma from patients who have recovered from viral infections can be used effectively as a treatment of patients with active disease. The use of solutions enriched of antiviral antibodies has several important advantages over the convalescent plasma including the high level of neutralizing antibodies supplied. Moreover, plasma-exchange is expensive and requires large volumes of substitution fluid With either albumin or fresh frozen plasma, increasing the risk of cardiovascular instability in the plasma donor and in the recipient, which can be detrimental in a critically ill patient with COVID 19 pneumonia. The use of plasma as a substitution fluid further increases treatment costs and is associated with risk of infections, allergic reactions and citrate-induced hypocalcemia. Albumin is better tolerated and less expensive, but exchanges using albumin solutions increase the risk of bleeding because of progressive coagulation factor depletion. The aforementioned limitations of plasma therapy can be in part overcome by using selective apheresis methods, such as double-filtration plasmapheresis (DFPP)3. During DFPP, plasma is separated from cellular components by a plasma filter, and is then allowed to pass through a fractionator filter. Depending on the membrane cut-off, the fractionator filter retains larger molecules and returns fluid along with smaller molecules to the circulation. Thus, the selection of a membrane with an appropriate sieving coefficient for IgG allows to efficiently clear autoantibodies in patients with antibody-mediated diseases (e.g., macroglobulinemia, myasthenia gravis and rheumatoid arthritis) with negligible fluid losses and limited removal of albumin and coagulation factors1. In patients with severe membranous nephropathy and high titer of autoreactive, nephritogenic antibodies against the podocyte-expressed M type phospholipase A2 receptor (PLA2R), DFPP accelerated anti PLA2R depletion4. Measurement of the antibody titer in treated patient and recovered fluid showed that antibody removal was extremely effective and that large part of antibodies was removed during the first DFPP procedure. This therapeutic regimen was safe and well tolerated and easy to apply4. In an ongoing pilot study we found that the same methodological approach can be used to remove circulating antibodies from patients who recovered from COVID 19 and to infuse these antibodies in patients with active viral infection. Treatment was well tolerated and preliminary findings are encouraging. Thus, in this novel pilot study we aim to explore whether the infusion of antibodies obtained with one single DFPP procedure from voluntary convalescent donors could offer an effective and safe therapeutic option for patients with earlier stages of coronavirus (COVID-19) pneumonia requiring oxygen supply without mechanical ventilation.

NCT ID: NCT04414293 Recruiting - COVID Clinical Trials

Low Dose Pulmonary Irradiation in Patients With COVID-19 Infection of Bad Prognosis

COVRTE-19
Start date: October 1, 2020
Phase: N/A
Study type: Interventional

The administration of low-dose lung irradiation produces anti-inflammatory effects that will decrease the pulmonary inflammatory response. The present study will evaluate the efficacy of treatment with low-dose pulmonary radiotherapy added to standard support therapy, in hospitalized patients with respiratory symptoms due to COVID-19 pneumonia, who do not experience improvement with conventional medical therapy and are not subsidiaries of ICU

NCT ID: NCT04408235 Not yet recruiting - COVID Clinical Trials

High Versus Low LMWH Dosages in Hospitalized Patients With Severe COVID-19 Pneumonia and Coagulopathy

COVID-19 HD
Start date: June 2020
Phase: Phase 3
Study type: Interventional

Randomized, controlled study conducted in hospitalized patients with severe COViD-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation. Aim of this study is to assess whether high doses of Low Molecular Weight Heparin (LMWH) (ie. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (ie, Enoxaparin 4000 IU once day) are: 1. More effective to prevent clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first, during hospital stay: 1. Death 2. Acute Myocardial Infarction [AMI] 3. Objectively confirmed, symptomatic arterial or venous thromboembolism [TE] 4. Need for either non-invasive - Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) - or invasive mechanical ventilation for patients who are in standard oxygen therapy by delivery interfaces at randomisation 5. Need for invasive mechanical ventilation for patients who are in non-invasive mechanical ventilation at randomisation 2. Similar in terms of major bleeding risk during hospital stay

NCT ID: NCT04401228 Active, not recruiting - COVID19 Clinical Trials

Predictive Models for Intensive Care Admission and Death of COVID-19

Start date: March 1, 2020
Phase:
Study type: Observational

To build simple and reliable predictive scores for intensive care admissions and deaths in COVID19 patients. These scores adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guidelines. The outcomes of the study are (i) admission in the Intensive Care Unit admission and (ii) death. All patients admitted in the Emergency Department with a positive reverse transcription‐polymerase chain reaction SARS-COV2 test were included in the study. Routine clinical and laboratory data were collected at their admission and during their stay. Chest X-Rays and CT-Scans were performed and analyzed by a senior radiologist. Generalized Linear Models using a binomial distribution with a logit link function (R software version X) were used to develop predictive scores for (i) admission to ICU among emergency ward patients; (ii) death among ICU patients. A first panel of Number Models with the highest AIC (BIC) was preselected. Ten-fold cross-validation was then used to estimate the out-of-sample prediction error among these preselected models. The one with the smallest prediction error was in the end singled out .

NCT ID: NCT04399681 Recruiting - COVID Clinical Trials

The Utility of Bedside Lung Ultrasonography on Diagnosis of COVID-19

Start date: May 10, 2020
Phase: N/A
Study type: Interventional

Novel Coronavirus 2019 Disease (COVID-19) mortality is highly associated with viral pneumonia and its complications. Accurate and prompt diagnosis shown to be effective to improve outcome by providing early treatment strategies. While chest X-ray (CXR) and computerized tomography (CT) are defined as gold standard, given the advantage of being an ionized radiation free, practical technique point of care ultrasound (POCUS) is also reported as a diagnostic tool for COVID-19. There are limited studies regarding the importance of POCUS in diagnosis and review of COVID-19. Therefore the aim of this study is to evaluate the utility of bedside lung ultrasound on diagnosis of COVID-19 for patients admitted to emergency department .

NCT ID: NCT04397692 Terminated - COVID-19 Clinical Trials

Inhaled NO for the Treatment of COVID-19 Caused by SARS-CoV-2 (US Trial)

Start date: June 13, 2020
Phase: N/A
Study type: Interventional

The purpose of this open label, randomized, study is to obtain information on the safety and efficacy of 80 ppm Nitric Oxide given in addition to the standard of care of patients with COVID-19 caused by SARS-CoV-2.

NCT ID: NCT04397497 Not yet recruiting - Covid-19 Clinical Trials

Mavrilimumab in Severe COVID-19 Pneumonia and Hyper-inflammation (COMBAT-19)

COMBAT-19
Start date: May 22, 2020
Phase: Phase 2
Study type: Interventional

This study is a prospective, phase II, multi-center, randomized, double-blind, placebo-controlled trial to evaluate the efficacy and safety of mavrilimumab in hospitalized patients with acute respiratory failure requiring oxygen supplementation in COVID- 19 pneumonia and a hyper-inflammatory status. The study will randomize patients to mavrilimumab or placebo, in addition to standard of care per local practice. The total trial duration will be 12 weeks after single mavrilimumab or placebo dose.

NCT ID: NCT04394208 Recruiting - COVID-19 Clinical Trials

Silymarin in COVID-19 Pneumonia

SCOPE
Start date: August 16, 2020
Phase: Phase 3
Study type: Interventional

A randomized placebo controlled trial to assess the clinical outcome in COVID-19 Pneumonia following administration of Silymarin owing to its role as a p38 MAPK pathway inhibitor and its antiviral, anti-inflammatory and anti-oxidant effects

NCT ID: NCT04394182 Suspended - Pneumonia, Viral Clinical Trials

Ultra Low Doses of Therapy With Radiation Applicated to COVID-19

ULTRA-COVID
Start date: April 21, 2020
Phase: N/A
Study type: Interventional

The host response against the coronavirus 2 (SARS-CoV-2) appears to be mediated by a 'cytoquine storm' developing a systemic inflammatory mechanism and an acute respiratory distress syndrome (ARDS), in the form of a bilateral pneumonitis, requiring invasive mechanical ventilation (IMV) in an important group of patients. In terms of preventing progression to the critical phase with the consequent need of admission to the intensive care units (ICU), it has been recently proposed that this inflammatory cytoquine-mediated process can be safely treated by a single course of ultra-low radiotherapy (RT) dose < 1 Gy. The main purpose of the study was to analyze the efficacy of ultra low-dose pulmonary RT, as an anti-inflammatory intention in patients with SARS-Cov-2 pneumonia with a poor or no response to standard medical treatment and without IMV.

NCT ID: NCT04394026 Completed - COVID Clinical Trials

Imaging Feature of SARS-CoV2 Infection

COVID19IF
Start date: April 16, 2020
Phase:
Study type: Observational

The novel coronavirus SARS-CoV2 clinically presents with pneumonia, characterised by fever, cough, dyspnea. The severity of the disease varies widely with evidence of mild disease in the majority of confirmed cases, severe pneumonia-dyspnea, hypoxia or lung involvement at imaging within 24-48 hours- and critical disease with respiratory failure, shock or multi-organ failure in particular patient cohorts. Imaging plays a key role is diagnosis and progression of this disease.