Clinical Trials Logo

Paralysis clinical trials

View clinical trials related to Paralysis.

Filter by:

NCT ID: NCT05540730 Recruiting - Clinical trials for Gait Disorders in Children

Analysis of Foot Plantar Pressure Behavior of Children With Obstetric Brachial Plexus Paralysis

Start date: March 3, 2019
Phase:
Study type: Observational

The aim of this study was to investigate the foot plantar pressure behavior alterations during gait for children with obstetric brachial plexus (OBBP). 19 children with OBBP and 10 healthy children will be included in the study. The inclusion criteria of the study were to be between the ages of 7-15, not have a history of surgery or botox in the last 6 months, and not have any other disease. Foot plantar pressures of all participants will be analyzed with a pedobarography device. For arm swing analysis, a video camera will be recorded during walking and arm flexion/extension angles will be measured with Kinovea software.

NCT ID: NCT05534243 Recruiting - PTSD Clinical Trials

The ED-AWARENESS-2 Trial

ED-AWARENES II
Start date: June 28, 2023
Phase: N/A
Study type: Interventional

The investigators will screen all mechanically ventilated ED patients for study eligibility and will enroll all consecutive patients satisfying inclusion and exclusion criteria. The study design is a pragmatic, multicenter, stepped wedge cluster randomized trial, enrolling at five sites over a 3-year period, divided into six time periods of six months. Prior to the study, each site will be randomized to their position within the design. One site will cross to the intervention period (i.e. succinylcholine as default neuromuscular blocker) every six months from the 2nd to 6th time period. Cluster order will be determined by computer-based randomization. To begin, each site will be exposed to control conditions; by the end of the study, each site will be exposed to intervention conditions. Patients in the control phase will receive usual care, and this phase will be entirely observational. After six months, a site will enter a 2-month transition phase. In this phase, the investigators will implement the intervention, similar to how they have implemented other ED-based interventions for mechanically ventilated patients. The investigators will engage and educate ED clinicians on the importance of AWP prevention and the study objectives. The intervention framework relies on the use of "nudges", without restricting choice. The use of neuromuscular blockers (i.e. "paralytic" medications) is already part of routine care in the ED in order to facilitate endotracheal intubation and initiation of mechanical ventilation for patients with acute respiratory failure. The two most common neuromuscular blockers used in the ED are succinylcholine and rocuronium. The preliminary data show a strong association between rocuronium (a longer-acting neuromuscular blocker) use and AWP. Therefore, this study aims to improve care by educating caregivers on AWP and the use of the neuromuscular blockers, which are already routinely used, and studying that process in a rigorous fashion. The default neuromuscular blocker in the intervention phase will be succinylcholine. Succinylcholine will be the default over rocuronium because: 1) it has safely been the default neuromuscular blocker of choice in the ED for >40 years ; 2) its 5-minute duration of action greatly reduces AWP risk; 3) the preliminary data regarding an increased risk of AWP with rocuronium and 4) ED rocuronium use has increased despite no patient-centered studies showing benefit over succinylcholine. Passive alerts (i.e. graphics, pocket cards) will also be strategically placed in the ED, and active alerts will be used as reminders before every nursing shift (i.e. "the huddle"). After this transition phase, the site will begin the intervention phase, and patients will again receive clinician-directed care, just after the intervention.

NCT ID: NCT05513482 Recruiting - Atrial Fibrillation Clinical Trials

Ultrasonography Evaluation of Diaphragm Kinetics in Patients Undergoing Atrial Fibrillation Ablation With Cryoballoon

Start date: January 23, 2022
Phase:
Study type: Observational

The purpose of this study to assess the diaphragm kinetics with Tissue Doppler Imaging in patients undergoing atrial fibrillation ablation with cryoballoon

NCT ID: NCT05506228 Recruiting - Cerebral Palsy Clinical Trials

How Are the Muscles Affected in Cerebral Palsy? A Study of Muscle Biopsies Taken During Orthopaedic Surgery.

CPTDBiopsy
Start date: January 15, 2002
Phase:
Study type: Observational

- Cerebral palsy (CP) is a motor disorder caused by an injury to the immature brain. Even though the brain damage does not change, children with CP will have progressively weaker, shorter and stiffer muscles that will lead to contractures, bony deformations, difficulty to walk and impaired manual ability. An acquired brain injury (ABI) later during childhood, such as after a stroke or an injury, will result in similar muscle changes, and will therefore also be included in this study. For simplicity, these participants will in this text be referred to as having CP. - The mechanism for the muscle changes is still unknown. Contractures and the risk for the hips to even dislocate is now treated by tendon lengthening, muscle release and bony surgery. During these surgeries muscle biopsies, tendon biopsies and blood samples will be taken and compared with samples from typically developed (TD) children being operated for fractures, knee injuries, and deformities. The specimens will be explored regarding inflammatory markers, signaling for muscle growth, signaling for connective tissue growth and muscle and tendon pathology. In blood samples, plasma and serum, e.g. pro-inflammatory cytokines and the cytoprotective polypeptide humanin will measured, and will be correlated to the amount humanin found in muscle. With this compound information the mechanism of contracture formation may be found, and hopefully give ideas for treatment that will protect muscle and joint health, including prevention of hip dislocation and general health. - The results will be correlated to the degree of contracture of the joint and the severity of the CP (GMFCS I-V, MACS I-V). - By comparing muscle biopsies from the upper limb with muscle biopsies from the lower limb, muscles that are used in more or less automated gait will be compared to muscles in the upper limb that are used more voluntarily and irregularly. - Muscles that flex a joint, often contracted, will be compared with extensor muscles from the same patient. Fascia, aponeurosis and tendon will also be sampled when easily attainable.

NCT ID: NCT05497609 Recruiting - Cerebral Palsy Clinical Trials

The Muscle in Children With Cerebral Palsy - Longitudinal Exploration of Microscopic Muscle Structure.

CPBiopsyBTX
Start date: January 15, 2006
Phase:
Study type: Observational

Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Since about 25 years a combination treatment with intramuscular botulinum toxin injections, braces and training has had a tremendous and increasing popularity, although lasting long-term clinical advantage is not yet proven. Muscle morphology of the biceps brachii and the gastrocnemius muscles: - The hypothesis is that care as usual, i.e. training and splinting sessions with botulinum toxin as adjuvant treatment, will reduce (normalize) the expression of the fast fatigable myosin heavy chain MyHC IIx and increase the expression of developmental myosin, as a possible sign of growth. As the biceps in the arm is used irregularly and voluntarily, and the gastrocnemius is activated during automated gait, the adaptations of those muscles will be different. Methods: Baseline muscle biopsies: Percutaneous biopsies are taken just before the first intramuscular botulinum toxin injection is given. The doses and the intervals for the botulinum toxin treatment will follow clinical routines. Biopsies 4-6 months, 12 months and 24 months after the first botulinum toxin injection: The exact same procedure as above will be performed, but the biopsies will be taken 2 cm distant, medial or lateral, from previous biopsy sites - Significance:. More knowledge is warranted regarding the actual molecular process in the muscle leading to a contracture, and its relation to the constant communication with the injured central nervous system. This study will give answers that could result in new, early prophylactic treatment of joint movement restrictions and motor impairment in children with CP.

NCT ID: NCT05494905 Recruiting - Cerebral Palsy Clinical Trials

Virtual Reality vs Functional Strength Training in Children With Cerebral Palsy

Start date: February 1, 2017
Phase: N/A
Study type: Interventional

Virtual reality (VR) has shown to be effective to improve arm function in children with cerebral palsy (CP). Recently, functional strength training (FST) starts to show to improve arm function in patients with stroke but has not been extensively explored in children with CP. This pilot study is to examine the effect of FST and VR on improving arm function in children with CP using a sequential multiple assignment randomized trial (SMART) to develop valid, high-quality adaptive intervention using VR and FST to improve arm function in children with CP. There is a growing interest and need for research on how to adapt and re-adapt intervention in children with CP in order to maximize clinical benefits. The treatment adapted here is by augmenting or switching to the other intervention. Forty children with spastic type of CP will be recruited from the greater Atlanta area. Children will be randomly assigned to receive either VR or FST for 6 weeks (60 minutes per day, 3 days per week). After receiving 6 weeks of intervention, the children will be evaluated to determine whether they are responders or non-responders. For those who are responders, they will continue receiving the same dosage and type of intervention. That is, children who are assigned to VR will continue receiving VR for the next 6 weeks; children who are assigned to FST will continue receiving FST for the next 6 weeks. For those who are non-responders, children will be randomly assigned to augmenting the other intervention or switching to the other intervention. That is, for children who are assigned to augmenting the other intervention (i.e. the combination group), they will receive the combination of FST and VR for the next 6 weeks. For children who are assigned to switch to the other intervention, children who are assigned to VR in the first 6 weeks will receive FST for the next 6 weeks; whereas children who are assigned to FST in the first 6 weeks will receive VR for the next 6 weeks. Similar instruction, visit, and email reminder will be conducted as what they receive in the first 6 weeks. At the end of the study, children and primary caregivers will be interviewed to understand their perception about the intervention they have received. The research team is expected children with CP will improve their arm function regardless which intervention they are assigned; however, children received VR will have a better improvement in arm function as compared with those who received FST at the end of the intervention.

NCT ID: NCT05444517 Recruiting - Pain, Postoperative Clinical Trials

Interscalene Block Versus Combined Infraclavicular-Anterior Suprascapular Blocks for Shoulder Surgery

Start date: June 13, 2023
Phase: N/A
Study type: Interventional

Postoperative analgesia after shoulder surgery remains a challenge in patients with preexisting pulmonary pathology, as interscalene brachial plexus block (ISB), the standard nerve block for shoulder surgery, carries a prohibitive risk of hemidiaphragmatic paralysis (HDP). Although several diaphragm-sparing nerve blocks have been proposed, none seems to offer equivalent analgesia to ISB while avoiding HDP altogether. For instance, even costoclavicular blocks, which initially fulfilled both requirements, were subsequently found to result in a non-negligible 5%-incidence of HDP. In this randomized trial, the authors set out to compare ISB and combined infraclavicular block-anterior suprascapular nerve blocks (ICB-ASSNB) for patients undergoing arthroscopic shoulder surgery. The authors hypothesized that ICB-ASSNB would provide equivalent postoperative analgesia to ISB 30 minutes after shoulder surgery and therefore designed the current study as an equivalence trial.

NCT ID: NCT05436782 Recruiting - Stroke; Paralysis Clinical Trials

Effects of Core Strengthening and PNF Pattern on Balance and Plantar Pressure in Chronic Stroke

PNF
Start date: December 3, 2021
Phase: N/A
Study type: Interventional

To compare the effects of core strengthening and PNF on standing balance and plantar pressure in chronic stroke patients

NCT ID: NCT05415514 Recruiting - Paralysis Clinical Trials

Feasibility Study of the Instrumented Evaluation of Eccentric Strengthening in Paresis Patients

RE PAR EX
Start date: December 1, 2022
Phase: N/A
Study type: Interventional

he aim of the "RE PAR EX" research is to evaluate the feasibility of the instrumented examination of the effects of eccentric muscle strengthening in paralytic patients. This project is part of the research axis of the movement analysis laboratory. Following a stroke or spinal cord injury, patients develop a spastic paresis syndrome, which is characterized by the appearance of paresis, musculo-tendinous retractions and muscular hyperactivities. If the traditional treatments proposed (stretching, motor work) show limits, the use of eccentric muscle strengthening in paresis patients has been developing for about ten years, with results superior to the usual treatments. The results of the studies evaluating it are focused on clinical evaluations and do not make it possible to identify the precise origin of the observed responses. A pathophysiological understanding of the therapeutic effects of eccentric strengthening would be possible through instrumented examination of muscle structure and function, combining dynamometry, ultrasound, elastrography and electromyography (EMG). However, the feasibility of this quantified instrumental examination in paretic patients during a strengthening protocol has not been evaluated. The feasibility of a quantified instrumented examination in this setting is the aim of this research, a necessary prerequisite for a larger interventional study to evaluate the biomechanical and neurophysiological effects of eccentric muscle strengthening in paretic patients.

NCT ID: NCT05403034 Recruiting - Clinical trials for Obstetrical Brachial Plexus Palsy

Study of the Biological Function of Muscle Satellite Cells From Patients With Obstetric Brachial Plexus Palsy

SCOPE
Start date: October 17, 2022
Phase: N/A
Study type: Interventional

The purpose of this prospective work is to study the consequences of obstetrical brachial plexus paralysis on the rotator muscles of the shoulder. The hypothesis is that shoulder stiffness of these children is due to an impairment of the shoulder rotator muscles. The investigators want to test the regenerative capacities of these muscles. The development of a cellular model of this pathology will allow to test new therapeutic perspectives and to validate our hypothesis.