Obesity Clinical Trial
— KETO-MIOfficial title:
Effects of Very Low Calorie Ketogenic Diet on Microbiota, Adipose Tissue and Immunitary Regulation: Pilot Study on Patients With Metabolic Syndrome
VLCKD has showed to be an impactful diet on several metabolism aspects and has proven to be useful for preventing and treating diabetes mellitus type 2, overweight, chronic inflammation and fatty liver. For this reason, the aim of this pilot study is to examinate the potential effect of a VLCKD on a group of patients that contemporarily have DM2, obesity and Non alcholic fatty liver disease (NAFLD), comparing the results with an ipocaloric diet based on Mediterranean Principles and Italian LARN (SINU 2014). This study will consider several interrelated outcomes such as anthropometric data, hematochemical and hormonal parameters, questionnaires, stool microbiota and omics, blood microvescicles, urine tests, instrumental tests (DXA, BIVA, ecographies), biopses and functional tests. 40 subjects will be evaluated and divided in two groups of 20 (VLCKD) and 20 (MedDiet).
Status | Recruiting |
Enrollment | 40 |
Est. completion date | December 2024 |
Est. primary completion date | September 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 25 Years to 65 Years |
Eligibility | Inclusion Criteria: - Age 25-65 - BMI 30-40 mg/m2 - NAFLD - DM2 drug-treated (metformin, SGLT2 inhibitors, GLP-1 analogues, DPPIV inhibitors, basal insulin) and HbA1c > 7 and < 10 %. Exclusion Criteria: - Secondary obesity due to genetic or endocrinologic causes. - renal disease with eGFR < 45 mL/min/1.73m2 or macroalbuminuria or calculosis - insulin basal + bolus or HbA1c% >10.0% - Other types of DM - ipopituitarism or adrenal insufficiency - antibiotics use less than 3 months before the first visit |
Country | Name | City | State |
---|---|---|---|
Italy | : Italy Pediatric Endocrine Service of AOU Maggiore della Carità of Novara; SCDU of Pediatrics, Department of Health Sciences, University of Eastern Piedmont | Novara |
Lead Sponsor | Collaborator |
---|---|
Azienda Ospedaliero Universitaria Maggiore della Carita | Laboratoire THERASCIENCE |
Italy,
Abbasi J. Interest in the Ketogenic Diet Grows for Weight Loss and Type 2 Diabetes. JAMA. 2018 Jan 16;319(3):215-217. doi: 10.1001/jama.2017.20639. No abstract available. — View Citation
American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019 Jan;42(Suppl 1):S46-S60. doi: 10.2337/dc19-S005. — View Citation
American Diabetes Association. 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019 Jan;42(Suppl 1):S81-S89. doi: 10.2337/dc19-S008. — View Citation
Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, Turnbaugh JA, Verdin E, Hall KD, Leibel RL, Ravussin E, Rosenbaum M, Patterson AD, Turnbaugh PJ. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell. 2020 Jun 11;181(6):1263-1275.e16. doi: 10.1016/j.cell.2020.04.027. Epub 2020 May 20. — View Citation
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. doi: 10.1164/ajrccm.166.1.at1102. No abstract available. Erratum In: Am J Respir Crit Care Med. 2016 May 15;193(10):1185. — View Citation
Baker ST, Jerums G, Prendergast LA, Panagiotopoulos S, Strauss BJ, Proietto J. Less fat reduction per unit weight loss in type 2 diabetic compared with nondiabetic obese individuals completing a very-low-calorie diet program. Metabolism. 2012 Jun;61(6):873-82. doi: 10.1016/j.metabol.2011.10.017. Epub 2011 Dec 5. — View Citation
Barengolts E. GUT MICROBIOTA, PREBIOTICS, PROBIOTICS, AND SYNBIOTICS IN MANAGEMENT OF OBESITY AND PREDIABETES: REVIEW OF RANDOMIZED CONTROLLED TRIALS. Endocr Pract. 2016 Oct;22(10):1224-1234. doi: 10.4158/EP151157.RA. Epub 2016 Jul 13. — View Citation
Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macias-Gonzalez M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord. 2019 Dec;20(4):415-425. doi: 10.1007/s11154-019-09518-8. — View Citation
Cappellano G, Morandi EM, Rainer J, Grubwieser P, Heinz K, Wolfram D, Bernhard D, Lobenwein S, Pierer G, Ploner C. Human Macrophages Preferentially Infiltrate the Superficial Adipose Tissue. Int J Mol Sci. 2018 May 8;19(5):1404. doi: 10.3390/ijms19051404. — View Citation
Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, Mariani S, Lubrano C, Poggiogalle E, Migliaccio S, Donini LM, Basciani S, Cignarelli A, Conte E, Ceccarini G, Bogazzi F, Cimino L, Condorelli RA, La Vignera S, Calogero AE, Gambineri A, Vignozzi L, Prodam F, Aimaretti G, Linsalata G, Buralli S, Monzani F, Aversa A, Vettor R, Santini F, Vitti P, Gnessi L, Pagotto U, Giorgino F, Colao A, Lenzi A; Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest. 2019 Nov;42(11):1365-1386. doi: 10.1007/s40618-019-01061-2. Epub 2019 May 20. — View Citation
Capstick F, Brooks BA, Burns CM, Zilkens RR, Steinbeck KS, Yue DK. Very low calorie diet (VLCD): a useful alternative in the treatment of the obese NIDDM patient. Diabetes Res Clin Pract. 1997 May;36(2):105-11. doi: 10.1016/s0168-8227(97)00038-7. — View Citation
Caresio C, Salvi M, Molinari F, Meiburger KM, Minetto MA. Fully Automated Muscle Ultrasound Analysis (MUSA): Robust and Accurate Muscle Thickness Measurement. Ultrasound Med Biol. 2017 Jan;43(1):195-205. doi: 10.1016/j.ultrasmedbio.2016.08.032. Epub 2016 Oct 6. — View Citation
Cicero AF, Benelli M, Brancaleoni M, Dainelli G, Merlini D, Negri R. Middle and Long-Term Impact of a Very Low-Carbohydrate Ketogenic Diet on Cardiometabolic Factors: A Multi-Center, Cross-Sectional, Clinical Study. High Blood Press Cardiovasc Prev. 2015 Dec;22(4):389-94. doi: 10.1007/s40292-015-0096-1. Epub 2015 May 19. — View Citation
Cunha GM, Guzman G, Correa De Mello LL, Trein B, Spina L, Bussade I, Marques Prata J, Sajoux I, Countinho W. Efficacy of a 2-Month Very Low-Calorie Ketogenic Diet (VLCKD) Compared to a Standard Low-Calorie Diet in Reducing Visceral and Liver Fat Accumulation in Patients With Obesity. Front Endocrinol (Lausanne). 2020 Sep 14;11:607. doi: 10.3389/fendo.2020.00607. eCollection 2020. — View Citation
Daien CI, Pinget GV, Tan JK, Macia L. Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Front Immunol. 2017 May 12;8:548. doi: 10.3389/fimmu.2017.00548. eCollection 2017. — View Citation
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014 Jan 23;505(7484):559-63. doi: 10.1038/nature12820. Epub 2013 Dec 11. — View Citation
Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, Iqbal R, Kumar R, Wentzel-Viljoen E, Rosengren A, Amma LI, Avezum A, Chifamba J, Diaz R, Khatib R, Lear S, Lopez-Jaramillo P, Liu X, Gupta R, Mohammadifard N, Gao N, Oguz A, Ramli AS, Seron P, Sun Y, Szuba A, Tsolekile L, Wielgosz A, Yusuf R, Hussein Yusufali A, Teo KK, Rangarajan S, Dagenais G, Bangdiwala SI, Islam S, Anand SS, Yusuf S; Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017 Nov 4;390(10107):2050-2062. doi: 10.1016/S0140-6736(17)32252-3. Epub 2017 Aug 29. — View Citation
Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen JP, de Vos WM, Cani PD. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019 Jul;25(7):1096-1103. doi: 10.1038/s41591-019-0495-2. Epub 2019 Jul 1. — View Citation
Di Rosa C, Lattanzi G, Taylor SF, Manfrini S, Khazrai YM. Very low calorie ketogenic diets in overweight and obesity treatment: Effects on anthropometric parameters, body composition, satiety, lipid profile and microbiota. Obes Res Clin Pract. 2020 Nov-Dec;14(6):491-503. doi: 10.1016/j.orcp.2020.08.009. Epub 2020 Sep 9. — View Citation
Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, Fiol M, Gomez-Gracia E, Lopez-Sabater MC, Vinyoles E, Aros F, Conde M, Lahoz C, Lapetra J, Saez G, Ros E; PREDIMED Study Investigators. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006 Jul 4;145(1):1-11. doi: 10.7326/0003-4819-145-1-200607040-00004. Erratum In: Ann Intern Med. 2018 Aug 21;169(4):270-271. — View Citation
Goday A, Bellido D, Sajoux I, Crujeiras AB, Burguera B, Garcia-Luna PP, Oleaga A, Moreno B, Casanueva FF. Short-term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diabetes. 2016 Sep 19;6(9):e230. doi: 10.1038/nutd.2016.36. — View Citation
Gregg EW, Shaw JE. Global Health Effects of Overweight and Obesity. N Engl J Med. 2017 Jul 6;377(1):80-81. doi: 10.1056/NEJMe1706095. Epub 2017 Jun 12. No abstract available. — View Citation
Gu Y, Yu H, Li Y, Ma X, Lu J, Yu W, Xiao Y, Bao Y, Jia W. Beneficial effects of an 8-week, very low carbohydrate diet intervention on obese subjects. Evid Based Complement Alternat Med. 2013;2013:760804. doi: 10.1155/2013/760804. Epub 2013 Mar 14. — View Citation
Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995 Mar 2;332(9):556-61. doi: 10.1056/NEJM199503023320902. — View Citation
Heinsen FA, Fangmann D, Muller N, Schulte DM, Ruhlemann MC, Turk K, Settgast U, Lieb W, Baines JF, Schreiber S, Franke A, Laudes M. Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obes Facts. 2016;9(6):379-391. doi: 10.1159/000449506. Epub 2016 Nov 30. — View Citation
Invernizzi M, Rizzi M, Carda S, Cisari C, Molinari C, Reno F. Mini invasive skeletal muscle biopsy technique with a tri-axial end cut needle. Eur Rev Med Pharmacol Sci. 2015 Jul;19(13):2446-51. — View Citation
Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):2985-3023. doi: 10.1016/j.jacc.2013.11.004. Epub 2013 Nov 12. No abstract available. Erratum In: J Am Coll Cardiol. 2014 Jul 1;63(25 Pt B):3029-3030. — View Citation
Kipnis V, Midthune D, Freedman L, Bingham S, Day NE, Riboli E, Ferrari P, Carroll RJ. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002 Dec;5(6A):915-23. doi: 10.1079/PHN2002383. — View Citation
Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, Sovran B, Denis RGP, Dairou J, Cardellini M, Moreno-Navarrete JM, Straub M, Jegou S, McQuitty C, Viel T, Esposito B, Tavitian B, Callebert J, Luquet SH, Federici M, Fernandez-Real JM, Burcelin R, Launay JM, Tedgui A, Mallat Z, Sokol H, Taleb S. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med. 2018 Aug;24(8):1113-1120. doi: 10.1038/s41591-018-0060-4. Epub 2018 Jun 25. — View Citation
Lee MJ, Pickering RT, Puri V. Prolonged efficiency of siRNA-mediated gene silencing in primary cultures of human preadipocytes and adipocytes. Obesity (Silver Spring). 2014 Apr;22(4):1064-9. doi: 10.1002/oby.20641. Epub 2013 Dec 5. — View Citation
Li Y, Luo W, Deng Z, Lei G. Diet-Intestinal Microbiota Axis in Osteoarthritis: A Possible Role. Mediators Inflamm. 2016;2016:3495173. doi: 10.1155/2016/3495173. Epub 2016 Aug 17. — View Citation
Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011 Oct;54(10):2506-14. doi: 10.1007/s00125-011-2204-7. Epub 2011 Jun 9. — View Citation
Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G, Bonadonna RC, Frontoni S. Very-low-calorie diet: a quick therapeutic tool to improve beta cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr. 2012 Mar;95(3):609-13. doi: 10.3945/ajcn.111.023697. Epub 2012 Feb 8. — View Citation
Manfredi M, Conte E, Barberis E, Buzzi A, Robotti E, Caneparo V, Cecconi D, Brandi J, Vanni E, Finocchiaro M, Astegiano M, Gariglio M, Marengo E, De Andrea M. Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease. J Proteomics. 2019 Mar 20;195:138-149. doi: 10.1016/j.jprot.2018.10.017. Epub 2018 Nov 2. — View Citation
McAllan L, Skuse P, Cotter PD, O'Connor P, Cryan JF, Ross RP, Fitzgerald G, Roche HM, Nilaweera KN. Protein quality and the protein to carbohydrate ratio within a high fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLoS One. 2014 Feb 10;9(2):e88904. doi: 10.1371/journal.pone.0088904. eCollection 2014. — View Citation
Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab (Lond). 2015 Mar 11;12:12. doi: 10.1186/s12986-015-0009-2. eCollection 2015. — View Citation
Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, Kloosterhuis N, van der Leij RJ, van der Want H, Kroesen BJ, Vonk R, Rezaee F. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One. 2011 Mar 23;6(3):e17154. doi: 10.1371/journal.pone.0017154. — View Citation
Monda V, Polito R, Lovino A, Finaldi A, Valenzano A, Nigro E, Corso G, Sessa F, Asmundo A, Nunno ND, Cibelli G, Messina G. Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States. Int J Mol Sci. 2020 May 2;21(9):3228. doi: 10.3390/ijms21093228. — View Citation
Montesi L, El Ghoch M, Brodosi L, Calugi S, Marchesini G, Dalle Grave R. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diabetes Metab Syndr Obes. 2016 Feb 26;9:37-46. doi: 10.2147/DMSO.S89836. eCollection 2016. — View Citation
Moriconi E, Camajani E, Fabbri A, Lenzi A, Caprio M. Very-Low-Calorie Ketogenic Diet as a Safe and Valuable Tool for Long-Term Glycemic Management in Patients with Obesity and Type 2 Diabetes. Nutrients. 2021 Feb 26;13(3):758. doi: 10.3390/nu13030758. — View Citation
Muscogiuri G, El Ghoch M, Colao A, Hassapidou M, Yumuk V, Busetto L; Obesity Management Task Force (OMTF) of the European Association for the Study of Obesity (EASO). European Guidelines for Obesity Management in Adults with a Very Low-Calorie Ketogenic Diet: A Systematic Review and Meta-Analysis. Obes Facts. 2021;14(2):222-245. doi: 10.1159/000515381. Epub 2021 Apr 21. — View Citation
Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol. 2015 Feb 2;6:27. doi: 10.3389/fpsyg.2015.00027. eCollection 2015. — View Citation
Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: Tackling the unknowns-A review. Anal Chim Acta. 2018 Dec 11;1037:13-27. doi: 10.1016/j.aca.2017.12.034. Epub 2017 Dec 30. — View Citation
Piaggi P, Vinales KL, Basolo A, Santini F, Krakoff J. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J Endocrinol Invest. 2018 Jan;41(1):83-89. doi: 10.1007/s40618-017-0732-9. Epub 2017 Jul 24. — View Citation
Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x. — View Citation
Pownall HJ, Bray GA, Wagenknecht LE, Walkup MP, Heshka S, Hubbard VS, Hill J, Kahn SE, Nathan DM, Schwartz AV, Johnson KC; Look AHEAD Research Group. Changes in body composition over 8 years in a randomized trial of a lifestyle intervention: the look AHEAD study. Obesity (Silver Spring). 2015 Mar;23(3):565-72. doi: 10.1002/oby.21005. — View Citation
Romano L, Marchetti M, Gualtieri P, Di Renzo L, Belcastro M, De Santis GL, Perrone MA, De Lorenzo A. Effects of a Personalized VLCKD on Body Composition and Resting Energy Expenditure in the Reversal of Diabetes to Prevent Complications. Nutrients. 2019 Jul 4;11(7):1526. doi: 10.3390/nu11071526. — View Citation
Rondanelli M, Gasparri C, Peroni G, Faliva MA, Naso M, Perna S, Bazire P, Sajuox I, Maugeri R, Rigon C. The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition. Front Endocrinol (Lausanne). 2021 May 14;12:662591. doi: 10.3389/fendo.2021.662591. eCollection 2021. Erratum In: Front Endocrinol (Lausanne). 2021 Dec 22;12:825790. — View Citation
Rothberg AE, McEwen LN, Kraftson AT, Fowler CE, Herman WH. Very-low-energy diet for type 2 diabetes: an underutilized therapy? J Diabetes Complications. 2014 Jul-Aug;28(4):506-10. doi: 10.1016/j.jdiacomp.2014.03.014. Epub 2014 Mar 29. — View Citation
Saslow LR, Daubenmier JJ, Moskowitz JT, Kim S, Murphy EJ, Phinney SD, Ploutz-Snyder R, Goldman V, Cox RM, Mason AE, Moran P, Hecht FM. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. 2017 Dec 21;7(12):304. doi: 10.1038/s41387-017-0006-9. — View Citation
Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017 Apr 8;15(1):73. doi: 10.1186/s12967-017-1175-y. — View Citation
Solito A, Bozzi Cionci N, Calgaro M, Caputo M, Vannini L, Hasballa I, Archero F, Giglione E, Ricotti R, Walker GE, Petri A, Agosti E, Bellomo G, Aimaretti G, Bona G, Bellone S, Amoruso A, Pane M, Di Gioia D, Vitulo N, Prodam F. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin Nutr. 2021 Jul;40(7):4585-4594. doi: 10.1016/j.clnu.2021.06.002. Epub 2021 Jun 11. — View Citation
Steven S, Hollingsworth KG, Al-Mrabeh A, Avery L, Aribisala B, Caslake M, Taylor R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care. 2016 May;39(5):808-15. doi: 10.2337/dc15-1942. Epub 2016 Mar 21. Erratum In: Diabetes Care. 2018 Apr 24;: — View Citation
Very low-calorie diets. National Task Force on the Prevention and Treatment of Obesity, National Institutes of Health. JAMA. 1993 Aug 25;270(8):967-74. — View Citation
Viljanen AP, Lautamaki R, Jarvisalo M, Parkkola R, Huupponen R, Lehtimaki T, Ronnemaa T, Raitakari OT, Iozzo P, Nuutila P. Effects of weight loss on visceral and abdominal subcutaneous adipose tissue blood-flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med. 2009;41(2):152-60. doi: 10.1080/07853890802446754. — View Citation
Walker GE, Marzullo P, Prodam F, Bona G, Di Blasio AM. Obesity modifies expression profiles of metabolic markers in superficial and deep subcutaneous abdominal adipose tissue depots. Endocrine. 2014 May;46(1):99-106. doi: 10.1007/s12020-013-0040-x. Epub 2013 Sep 13. — View Citation
* Note: There are 56 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in weight | Variation of body weight assessed through body mass index change (BMI)(kg/m2) | Change from Baseline BMI at 15 days, 30 days, 60 days, 90 days | |
Primary | Change in body circumferences | Variation of body circumferences (waist, hips) | Change from Baseline circumferences at 15 days, 30 days, 60 days, 90 days | |
Primary | Change in metabolic control | Variation of blood glucose | Change from Baseline blood glucose at 15 days, 30 days, 60 days, 90 days | |
Primary | Change in metabolic control | Change of cardio-metabolic risk factors: lipid profile | Change from Baseline lipid profile at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in Metabolic control | Change of cardio-metabolic risk factors: insulin resistance (HOMA-IR) | Change from Baseline HOMA-IR at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in kidney profile | Variation of serum creatinin | Change from Baseline Serum Creatinin at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in liver profile | Variation of liver profile (AST, ALT, GGT, bilirubin) | Change from Baseline liver profile at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in uric acid | Variation of uric acid in blood | Change from Baseline uric acid at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in blood pressure | Variation of blood pressure (diastolic and sistolic) | Change from Baseline blood pressure at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in body composition | Change of body composition (fat mass %) (BIVA) | Change from Baseline fat mass% at 15 days, 30 days, 60 days, 90 days | |
Secondary | Change in body composition | Change of body composition (fat mass %) (DXA) | Change from Baseline fat mass% at 90 days | |
Secondary | Change in muscolar functionality | Changes observed from functional tests (handgrip strenght) | Change from Baseline scores at 30, 90 days | |
Secondary | Change in muscolar functionality | Changes observed from functional tests (short physical portable battery score) | Change from Baseline scores at 30, 90 days | |
Secondary | Change in muscolar functionality | Changes observed from functional tests (time up and go test) | Change from Baseline scores at 30, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (ghrelin, leptin, adiponectin) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (irisin) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (zonulin) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (asprosin) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (TSH) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (FT4) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (PTH) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (25OH vitamin D) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (PYY) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in hormones | Variation of hormones in blood (IGF-1) | Change from Baseline blood hormones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in blood ketones | Variation of ketones in blood | Change from Baseline blood ketones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in basal metabolic rate | Variation of basal metabolic rate through indirect calorimetry | Change from Baseline basal metabolic rate at 90 days | |
Secondary | Change in urine ketones | Variation of urine excretion in terms of ketones | Change from Baseline urine ketones at 15, 30 days, 60 days, 90 days | |
Secondary | Change in urine nitrogen excretion | Variation of urine excretion in terms of nitrogen | Change from Baseline urine nitrogen at 15, 30 days, 60 days, 90 days | |
Secondary | Change in omics profile | Variation of metabolomic profile of stools through liquid and gas chromatography | Change from Baseline omic profile of stools at 15, 30 days, 60 days, 90 days | |
Secondary | Change in omics profile | Variation of lipidomic profile of stools through liquid and gas chromatography | Change from Baseline omic profile of stools at 15, 30 days, 60 days, 90 days | |
Secondary | Change in omics profile | Variation of proteomic profile of stools through liquid and gas chromatography | Change from Baseline omic profile of stools at 15, 30 days, 60 days, 90 days | |
Secondary | Change in microbiota | Variation of prevalence of microbiota phyla through DNA sequencing of stools | Change from Baseline of prevalence of microbiota phyla at 15, 30 days, 60 days, 90 days | |
Secondary | Change in inflammatory status | Variation of inflammatory status in blood (C-reactive protein CRP) | Change from Baseline CRP and cytokines at 15, 30 days, 60 days, 90 days | |
Secondary | Change in inflammatory status | Variation of inflammatory status in blood (cytokines count) | Change from Baseline cytokines at 15, 30 days, 60 days, 90 days |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04101669 -
EndoBarrier System Pivotal Trial(Rev E v2)
|
N/A | |
Recruiting |
NCT04243317 -
Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults
|
N/A | |
Terminated |
NCT03772886 -
Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball
|
N/A | |
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Completed |
NCT04506996 -
Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2
|
N/A | |
Recruiting |
NCT06019832 -
Analysis of Stem and Non-Stem Tibial Component
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT04513769 -
Nutritious Eating With Soul at Rare Variety Cafe
|
N/A | |
Withdrawn |
NCT03042897 -
Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer
|
N/A | |
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Recruiting |
NCT05917873 -
Metabolic Effects of Four-week Lactate-ketone Ester Supplementation
|
N/A | |
Active, not recruiting |
NCT04353258 -
Research Intervention to Support Healthy Eating and Exercise
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Completed |
NCT01870947 -
Assisted Exercise in Obese Endometrial Cancer Patients
|
N/A | |
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Recruiting |
NCT05371496 -
Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction
|
Phase 2 |