Clinical Trials Logo

Clinical Trial Summary

The amount of essential amino acids (EAA) necessary to maximally stimulate muscle protein synthesis and optimize whole-body net protein balance during caloric deprivation has not been determined. This study will address that gap in knowledge by examining the resting and post-exercise muscle and whole-body protein kinetic responses to ingesting varying amounts of EAA after a 5 day period of negative energy balance. This study will provide the initial evidence to support the development of a recovery-based food product for military combat rations.


Clinical Trial Description

Short-term negative energy balance downregulates muscle protein synthesis and upregulates whole-body proteolysis and amino acid (AA) oxidation, thereby increasing nitrogen excretion and exacerbating whole-body and skeletal muscle protein loss. Consumption of quality proteins high in essential amino acid (EAA) content may attenuate protein loss during energy deficit by restoring whole-body and skeletal muscle anabolic potential to that observed in a eucaloric state. During energy balance, muscle protein synthesis appears to be maximally stimulated after consuming 15 g of EAA at rest and after conventional resistance-type exercise. In response to a short-term energy deficit that downregulated basal muscle protein synthesis by as much as 27%, consuming 15 g (~7.5 g EAA) and 30 g (~15 g EAA) of whey protein after a bout of resistance exercise restored muscle protein synthesis rates to resting, fasted rates observed in the eucaloric state in a dose dependent manner. The effect of EAA intakes above 15 g on resting and post-exercise muscle protein synthesis and the whole-body protein anabolic response during acute energy deficit has not been determined. This study will assess resting and post-resistance exercise whole-body and skeletal muscle protein synthesis responses to across a spectrum of EAA intakes following a well-controlled, short-term (5-d) energy deficit (30% energy deficit). Using a randomized, double-blind, cross-over design, 20 resistance trained (≥ 2 d/wk for the past 6 mo) adults will undergo two, non-consecutive 5-d energy deficit periods, separated by a 14-d washout period. Resting and post-resistance exercise (single leg exercise model) whole-body protein turnover and skeletal muscle protein synthesis responses to two different doses of EAA (standard, 0.10 g/kg vs high, 0.30 g/kg) will be determined the morning after completing the 5-d energy deficit. This design will test the hypothesis that higher absolute doses of EAA are required to maintain resting and post-exercise anabolic responses during energy deficit. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03372928
Study type Interventional
Source United States Army Research Institute of Environmental Medicine
Contact
Status Completed
Phase N/A
Start date September 1, 2018
Completion date March 20, 2019

See also
  Status Clinical Trial Phase
Completed NCT05386771 - Effects of Whey and Collagen Protein Blend on Protein Synthesis Rates N/A
Recruiting NCT05711095 - The Anabolic Properties of Fortified Plant-based Protein in Older People N/A
Withdrawn NCT00653679 - Exercise and Muscle Protein Signalling N/A
Completed NCT04121689 - Time Course of Postprandial Protein Metabolism N/A
Completed NCT03303729 - Influence of Carbohydrate on Amino Acid Absorption From Dietary Protein (ICADP) N/A
Not yet recruiting NCT02732353 - Absorption and Muscle-stimulating Effect of Hydrolyzed and Minced Beef N/A
Completed NCT04302038 - The Effects Potato Protein on Rates of Myofibrillar Muscle Protein Synthesis in Young Women N/A
Completed NCT03994198 - Effect of Protein Quality During Overreaching in Trained Cyclists N/A
Active, not recruiting NCT05347667 - Menstrual Cycle Phase Muscle Protein Synthesis N/A
Completed NCT04894747 - Mycoprotein and Pea Protein Blend and Muscle Protein Synthetic Response N/A
Recruiting NCT05664269 - Anabolic Properties of Canola N/A
Completed NCT05353595 - The Effect of Mealworm Protein Ingestion on Muscle Protein Synthesis After Running Exercise in Humans N/A
Completed NCT05151887 - The Impact of a Whole-food Animal-based Versus Plant-based Protein Rich Meal on Muscle Protein Synthesis N/A
Recruiting NCT04232254 - Defining Beef and Meal Frequency as Key Components of a Healthy Eating Pattern for Muscle Health and Wellbeing N/A
Completed NCT04981652 - The Effect of Whole Milk to Improve Muscle Health in Older Women N/A
Recruiting NCT05876299 - The Anabolic Properties of a Lipid-rich Pork Matrix N/A
Completed NCT02282566 - Effect of Protein-nutrition Beverages on Muscle Protein Synthesis in Women N/A
Completed NCT01885429 - Effect of Supplementing a Mixed Macronutrient Beverage With Graded Doses of Leucine on Myofibrillar Protein Synthesis N/A
Completed NCT05178732 - The Effect of Menstrual Cycle Phase and a Protein-polyphenol Drink on Muscle Protein Synthesis N/A
Completed NCT05679596 - Exogenous Ketosis During Bed Rest in Older Adults N/A