Clinical Trials Logo

Muscle Protein Synthesis clinical trials

View clinical trials related to Muscle Protein Synthesis.

Filter by:

NCT ID: NCT06268678 Recruiting - Clinical trials for Muscle Protein Synthesis

The Effect of Menstrual Cycle Phase on Muscle Protein Synthesis

Start date: December 8, 2023
Phase: N/A
Study type: Interventional

The combination of dietary protein ingestion and resistance exercise are essential to increase muscle protein synthesis. The vast majority of studies assessing protein intake following resistance exercise in young adults has been conducted exclusively in men or in studies where both men and women are assessed. The increase in muscle mass is thought to be impacted by sex hormones that fluctuate across different phases of the menstrual cycle. However, the effect of menstrual cycle phase on muscle protein synthesis following exercise is not known.

NCT ID: NCT05876299 Recruiting - Clinical trials for Muscle Protein Synthesis

The Anabolic Properties of a Lipid-rich Pork Matrix

Start date: July 15, 2023
Phase: N/A
Study type: Interventional

The amount and quality of skeletal muscle mass determines physical performance, but also a significant contributor to metabolic health. As such, the maintenance of skeletal muscle mass is relevant across the lifespan to remain active in family and community life. Food ingestion, particularly protein, is one of the main anabolic to skeletal muscle tissue by stimulating muscle protein synthesis rates. There have been multiple attempts to identify specialized performance nutrition products (e.g., various isolated protein powders) to maximize the anabolic properties of dietary protein on muscle. Our research group, however, has advocated for a food focus approach to meet dietary protein requirements. Particularly, we propose that whole foods demonstrate food matrix effects (nutrient-nutrient interactions) that creates a greater anabolic action on muscle beyond what amino acids can create alone. Therefore, the objective of this study is to identify the anabolic properties of consuming lipid-rich pork products when compared to their leaner counter-parts. Our working hypothesis that the ingestion of 84% or 96% lean ground pork condition will stimulate a greater increase in muscle protein synthesis rates compared to an isocaloric carbohydrate beverage in healthy adults. We further hypothesize that the ingestion of 84% lean pork will augment the stimulation of muscle protein synthesis rates to a greater extent than 96% lean ground pork. To achieve our objective, we will recruit 15 healthy men and women (20-50 y) to receive prime-constant infusions to directly measure muscle protein synthesis rates before and after treatment ingestion using our lab's established methods.

NCT ID: NCT05711095 Recruiting - Sarcopenia Clinical Trials

The Anabolic Properties of Fortified Plant-based Protein in Older People

Strongplant
Start date: September 21, 2023
Phase: N/A
Study type: Interventional

Rationale: Consumption of sufficient dietary protein is fundamental to skeletal muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat, poultry, fish, eggs, and dairy are considered high-quality sources of dietary protein. However, the production of sufficient amounts of these conventional animal-based proteins to meet future global food demands will be challenging. Consequently, there is a great interest in more sustainable alternatives for these high-quality protein sources. Plant-derived proteins can be produced on a more sustainable scale, but are generally considered lower quality protein sources compared to animal-based sources because of incomplete essential amino acid profiles, resulting in lower anabolic properties for skeletal muscle building. Blending different plant-derived proteins can be a solution, but will never match the profile of other high-quality animal-derived proteins, likely necessitating the fortification of such plant-based protein blends with essential amino acids such as leucine. Objective: To assess post-prandial muscle protein synthesis rates in older males in response to ingesting a blend of plant protein fortified with free leucine compared to (gold standard) whey protein and compared to the plant protein blend without additional leucine. Study design: randomized, parallel-group, double-blind, combined superiority non-inferiority, intervention trial. Study population: 45 healthy (BMI 18.5-30 kg/m2) older males (age: 60-75 y inclusive). Intervention: Subjects will consume a beverage containing 20g whey protein isolate, 20g of a plant protein blend or the same plant protein blend fortified with 2g leucine. Continuous intravenous stable isotope amino acid tracer infusions will be applied, with plasma and muscle samples collected at different time points throughout the experimental test day. Main study parameters/endpoints: The primary outcome will be postprandial (0-4h) muscle protein synthesis rates following beverage ingestion.

NCT ID: NCT05679596 Completed - Physical Inactivity Clinical Trials

Exogenous Ketosis During Bed Rest in Older Adults

KBR
Start date: February 27, 2023
Phase: N/A
Study type: Interventional

The goal of this randomized, double-blind, parallel group interventional study is to evaluate the effect of ketone bodies on healthy older adults (65-85 y) during 5 days of bed rest. The main questions it aims to answer are: Does supplementation of ketone bodies prevent the typical decline in muscle protein synthesis, muscle size, muscle function, insulin sensitivity, and muscle mitochondrial function that occurs in response to bed rest? Researchers will compare ketone supplements (KET) to an energy matched control beverage (carbohydrates and fats) to see if the ketones can rescue the decline in muscle protein synthesis rates, muscle loss, muscle function, insulin sensitivity, and mitochondrial function due to 5 days of bed rest. This may positively impact the heath of older adults subjected to bed rest.

NCT ID: NCT05664269 Recruiting - Clinical trials for Muscle Protein Synthesis

Anabolic Properties of Canola

ALPACA
Start date: March 20, 2023
Phase: N/A
Study type: Interventional

Muscle tissue consists of proteins. These proteins are built up of small building blocks: amino acids. By consuming enough protein in our diet, we make sure that the body is provided with enough amino acids to facilitate muscle protein building. Also after exercise is protein intake important as it contributes to the recovery process. Providing the growing world population with sufficient animal-derived protein is a challenge. Plant proteins can be produced on a more sustainable commercial scale than conventional animal-derived proteins and therefore, can contribute to feeding our future population. Canola protein is a protein that is derived from rapeseed. The composition of canola seems to be comparable to that of other high-quality animal-based protein sources. But there is no data yet on the effect of canola protein ingestion on muscle growth. Additionally, most research on the effect of protein intake and muscle growth/recovery has been performed in males and we need more insight into the effect in females. The goal of this study is to investigate whether the ingestion of canola protein can stimulate muscle growth just as good as whey protein after a strength exercise session in females. Primary objective: To assess the impact of 20g canola or 20g whey protein vs placebo ingestion on acute 5-hour postprandial muscle protein synthesis rates during recovery from lower-body resistance-type exercise in vivo in young females. Secondary objective: To assess the impact of 20g canola protein vs 20g whey protein ingestion on acute 5-hour postprandial muscle protein synthesis rates during recovery from lower-body resistance-type exercise in vivo in young females. Tertiary objectives: Compare signaling pathways and. postprandial 5-hour plasma glucose, insulin, and amino acid concentrations, (including area under the curve, peak concentrations, and time to peak) following canola protein, whey protein, and placebo ingestion during recovery from lower-body resistance-type exercise in young females. Hypothesis: it is hypothesized that acute 5-hour postprandial muscle protein synthesis rates will be not different following 20g canola protein and 20g whey protein ingestion and higher compared to placebo during lower-body post-exercise recovery in healthy young females.

NCT ID: NCT05386771 Completed - Clinical trials for Muscle Protein Synthesis

Effects of Whey and Collagen Protein Blend on Protein Synthesis Rates

Blend
Start date: September 6, 2022
Phase: N/A
Study type: Interventional

Rationale: Protein ingestion stimulates muscle protein synthesis and augments the muscle protein synthetic response to a single exercise session. In support, protein supplementation has been shown to augment the gains in muscle mass and strength following resistance exercise training. The force generated by contracting muscle is transferred through a network of connective tissue proteins towards the bone. Consequently, remodeling of skeletal muscle connective tissue represents an essential component of skeletal muscle adaptation to exercise. The anabolic effect of a protein supplement is mainly determined by the plasma amino acid response after ingestion. Although whey protein is considered the preferred protein source to maximize myofibrillar protein synthesis rates, it contains insufficient glycine and proline to support the post-exercise increase in connective tissue protein synthesis rates. In contrast, collagen protein is rich in glycine and proline and has, therefore, been proposed as a preferred protein source to support connective tissue remodeling. Hence, the combined ingestion of whey plus collagen protein may therefore be preferred to stimulate both myofibrillar and collagen protein synthesis rates in skeletal muscle tissue. The most ideal protein supplement for stimulating both myofibrillar and collagen protein synthesis is one that gives a rapid initial rise in plasma amino acid concentrations including leucine, proline and glycine concentrations. However, the effect a blend of whey and collagen protein on myofibrillar and connective tissue protein synthesis rates is unknown. Objective: To assess the effect of a whey and collagen protein blend versus a placebo on myofibrillar and connective tissue protein synthesis rates in muscle obtained during recovery from exercise and rest in vivo in humans. Study design: Double-blind, parallel-group, placebo-controlled intervention study. Study population: 28 healthy recreationally active males (18-35 y; BMI: 18.5-30 kg/m2). Intervention: Participants will perform unilateral resistance exercise followed by the ingestion of either a blend of 25 g whey and 5 g collagen protein or a non-caloric placebo (flavored water). Continuous intravenous stable isotope amino acid tracer infusions will be applied, and plasma and muscle samples will be collected in order to assess protein synthesis rates in muscle tissue.

NCT ID: NCT05353595 Completed - Clinical trials for Muscle Protein Synthesis

The Effect of Mealworm Protein Ingestion on Muscle Protein Synthesis After Running Exercise in Humans

Centurion
Start date: June 3, 2022
Phase: N/A
Study type: Interventional

Rationale: Consumption of sufficient dietary protein is fundamental to skeletal muscle mass maintenance and overall health. Conventional animal-based protein sources such as meat, poultry, fish, eggs, and dairy are considered high-quality sources of dietary protein. However, the production of sufficient amounts of these conventional animal-based proteins to meet future global food demands will be challenging. Consequently, there is a great interest in more sustainable alternatives for these high-quality protein sources. Edible insects have recently been proposed as a high quality source of dietary protein. Insects are produced on a more viable and sustainable commercial scale and, as such, may contribute to ensuring global food security. Insect derived proteins represent a protein source that combines high quality with a (more) sustainable production. Though insect proteins have been suggested as a solution to secure future global dietary protein needs, there little data to support the bioavailability of insect derived proteins and their capacity to stimulate post-exercise muscle protein synthesis rates in vivo in humans. Objective: To assess the impact of ingesting mealworm derived protein on muscle protein synthesis rates during recovery from aerobic exercise in a group healthy men and women Study design: randomized, counter-balanced, cross-over design Study population: 20 healthy lean (BMI 18.5-30 kg/m2) young males and females (age: 18-35 y inclusive). Intervention: Subjects will perform running exercise and consume either 0.38 g per kg bodyweight mealworm protein or a non-caloric placebo. In addition, continuous intravenous tracer infusions will be applied, with plasma and muscle samples collected. Main study parameters/endpoints: The primary outcome will be post-exercise muscle protein synthesis rates following beverage ingestion.

NCT ID: NCT05347667 Active, not recruiting - Menstrual Cycle Clinical Trials

Menstrual Cycle Phase Muscle Protein Synthesis

Start date: May 1, 2022
Phase: N/A
Study type: Interventional

Skeletal muscle size and function is regulated by various factors, including hormones. While we understand the role of male sex hormones (testosterone), we aren't sure how female sex hormones (estrogen and progesterone) influence muscle mass and strength. Female physiology is unique in that hormones fluctuate throughout the menstrual cycle. In the first phase (follicular phase) following menstruation, estrogen levels are high while progesterone levels are low. In the second phase (luteal phase), progesterone levels are high. Females are often excluded from studies because researchers are concerned that the menstrual cycle might affect the results. The purpose of this study is to investigate the response to resistance exercise in each phase of the menstrual cycle.

NCT ID: NCT05178732 Completed - Clinical trials for Muscle Protein Synthesis

The Effect of Menstrual Cycle Phase and a Protein-polyphenol Drink on Muscle Protein Synthesis

Start date: January 16, 2022
Phase: N/A
Study type: Interventional

Amino acid (building blocks of protein) and polyphenol supplements are commonly consumed post resistance exercise in order to aid muscle recovery. Both supplements have been shown to be beneficial in isolation, however, there is little known about the effect on recovery of combining the two. Muscle recovery is related to the ability to build new muscle protein from amino acids (muscle protein synthesis). This response is thought to be impacted in females by hormones that fluctuate across different phases of the menstrual cycle. However, the effect of menstrual cycle phase on muscle protein synthesis during recovery is not known.

NCT ID: NCT05151887 Completed - Sarcopenia Clinical Trials

The Impact of a Whole-food Animal-based Versus Plant-based Protein Rich Meal on Muscle Protein Synthesis

MeaL
Start date: June 28, 2021
Phase: N/A
Study type: Interventional

Rationale: Food intake stimulates muscle protein synthesis rates. The magnitude of the anabolic response to feeding forms a key factor in regulating muscle mass maintenance. Ingestion of animal-derived proteins generally leads to a greater stimulation of muscle protein synthesis when compared to the ingestion of plant-derived proteins. What is often neglected is that the anabolic properties of protein isolates do not necessarily reflect the anabolic response to the ingestion of the whole-foods from which those are derived. This discrepancy is due to the presence or absence of other components normally found within whole-food matrices, which influence protein digestion and amino acid absorption from animal based and plant based protein sources. A rapid and robust post-prandial release of food-derived amino acids is of particular relevance for older individuals, who typically show a blunted muscle protein synthetic response to feeding Objective: To compare the post-prandial muscle protein synthetic response following ingestion of a whole-food meal (560 kilo calorie (kCal); ~36 g protein total, ~0.45 g/kg body weight) containing ~100 g lean ground beef (~30 g protein) versus the ingestion of an isonitrogenous, isocaloric whole-food meal containing only plant-based protein sources (561 kCal; ~36 g protein total) in vivo in healthy, older men and women. Study design: randomized, counter-balanced, cross-over design, researchers and participants are not blinded, analysts are blinded. Study population: 16 healthy older (65-85 y) men and women (1:1 ratio of men:women) Intervention: Participants will undergo 2 test days. On one test day participants will consume a whole-food meal containing meat as the primary source of protein (~36 g, ~0.45 g/kg body weight). On the other day, participants will consume a whole-food meal containing only plant-based foods as the source of protein (~36 g or ~0.45 g/kg body weight). In addition, a continuous intravenous tracer infusion will be applied, and blood an muscle samples will be collected in order to assess the muscle protein synthetic response. Main study parameters/endpoints: The primary endpoint will be mixed muscle protein synthesis rates over the full 6h post-prandial period following meal ingestion.