View clinical trials related to Muscle Atrophy.
Filter by:This study aims to determine, via skeletal muscle ultrasound (US), the extent, timing and relationship between skeletal muscle mass loss and outcomes after orthotropic heart transplantation (OHT) and left ventricular assist device (LVAD) implantation amongst patients with cardiogenic shock. Advanced therapies such as OHT and VADs in the heart failure (HF) population may promote skeletal muscle mass and subsequent quality of life, but there is a lack of literature assessing muscle mass changes in HF patients before and after advanced therapies using US imaging. Therefore this observational study will provide further insight into the 1) changes in lean body mass during critical illness and 2) the feasibility of using bedside US to assess lean body mass in the inpatient setting.
Post-intensive care syndrome (PICS) encompasses persistent physical, cognitive, and psychiatric symptoms following ICU discharge, commonly triggered by serious conditions such as respiratory failure, sepsis, and mechanical ventilation. PICS prevalence is reported to be as high as 84% up to 12 months in patients with at least 2 days spent in the ICU or with mechanical ventilatory support. As a consequence, many patients do not return to they former level of function for weeks, months and even years. Muscular affection manifested by muscle weakness is particularly seen and is provoked by a combination of damage to the nerves or directly the muscles fibers. This affection is referred to as CU-Acquired Weakness (ICUAW). One third of the time, lower extremities are affected, often due to prolonged immobilization or sedation. Evidence suggests that early mobilization reduces the incidence of ICUAW at discharge and improves the number of patients able of stand. However achieving this early intervention is not always feasible due to time or personnel constraints. The purpose of the study is to examine the effectiveness of lower extremity neuromodulation for prevention of muscle deconditioning in patients admitted to the ICU.
Muscle wasting occurs rapidly in critically ill patients and impacts both short and long term outcomes. Altered protein metabolism drives muscle loss in ICU patients, with muscle protein breakdown exceeding muscle protein synthesis (MPS). Interventions aimed at attenuating muscle loss by stimulating MPS rates are hampered by a lack of knowledge on altered muscle protein turnover rates during critical illness. Only a few studies have specifically assessed muscle protein synthesis by using contemporary intravenous stable isotope infusions, which allows the assessment of MPS over a short (<9 hours) period of time. Results from such acute studies can be difficult to extend or translate into long-term clinical practice and outcomes. Oral deuterated water (2H2O) dosing provides an alternative method that can be utilized to extend the measurement of muscle protein synthesis over a period of several days or weeks. It could therefore provide a valuable tool to study muscle protein synthesis during ICU admission and the impact of different anabolic interventions. Although multiple studies using the deuterated water methodology have been performed in both healthy volunteers and patients, it has not yet been performed in critically ill patients. In this prospective study the investigators aim to assess fractional rates of muscle protein synthesis over a period of (maximal) 7 days in critically ill patients admitted to the intensive care unit. Secondly, the investigators aim to assess mechanisms of acute muscle wasting on an microscopic, ultrastructural and molecular level. Furthermore, the investigators aim to investigate to what extent muscle fibre size is recovered 3 months after ICU discharge.
This study will characterize intramuscular molecular mechanisms underlying anabolic resistance to protein ingestion during muscle disuse. Adults (n=12) will be studied using a unilateral leg immobilization model in which one leg will be randomly assigned to immobilization and the contralateral, active leg used as a within-subjects control. Immobilization will be implemented for five days using a rigid knee brace, during which time participants will ambulate using crutches. Integrated ribonucleic acid (RNA) synthesis will be determined during immobilization in the immobilized and non-immobilized legs using ingested deuterium oxide, salivary and blood sampling, and muscle biopsies. Immediately after immobilization, muscle biopsies will be collected before and 90 mins after consuming 25 g of whey protein from the immobilized and non-immobilized legs to characterize the intramuscular molecular response to protein feeding. Serial blood samples will be collected during that time to characterize the circulating metabolic response to protein ingestion. Knowledge generated from this effort will inform the development of targeted interventions for mitigating anabolic resistance to protein ingestion that develops during periods of muscle disuse.
Intensive Care Unit Acquired Weakness (ICUAW) describes muscle weakness that occurs in around 40% of patients during an intensive care stay. The morbidity and mortality of these patients is significantly increased over a 5-year period. The aim of this study is to investigate the combined effect of early enteral high-protein nutrition and early muscle activation on muscle atrophy in critically ill patients. The study will include 40 patients (20 intervention, 20 observation) with requirement for enteral nutrition at time of inclusion. In the intervention group the maximum possible level of mobilization is carried out and muscles are activated twice a day using neuromuscular electrical stimulation (NMES). The nutrition plan of the intervention group is based on the applicable guidelines for intensive care medicine with exception of increased protein intake. The control group receives therapy without deviating from the standard according of the DGEM guideline. The study aims to show that the decrease in muscle mass is significantly less than in the control group (primary hypothesis) via ultrasound of the rectus femoris muscle and in case of given consent muscle biopsy. As secondary hypothesis it is examined whether the combination of early high protein intake and muscle activation improves muscle strength and endurance.
The goal of this pilot randomized controlled trial is to compare the effects of aquatic therapy versus standard care on paraspinal and gluteal morphology and function in individuals with chronic low back pain.The main questions it aims to answer are: 1. What are the effects of aquatic therapy versus standard care on a) paraspinal and gluteal muscle size, composition (e.g., fatty infiltration) and b) lumbar and gluteal muscle strength in individuals with chronic LBP? 2. Is aquatic therapy more effective than standard care to improve pain, function and psychological factors (e.g., kinesiophobia, catastrophizing, anxiety, and depression)? 3. Is using a digital application "play the pain" feasible to monitor pain levels and the activities that participants used to cope with pain? Participants will be assigned to either the aquatic therapy group or standard care group where they will undergo a 10-week intervention including two 60-minute session per week.
The aim of this study is to investigate the efficacy of blood flow restriction (BFR) therapy in post operative rehabilitation following knee arthroscopy.
Severe skeletal wasting and catabolic weight loss are highly common among patients with heart failure with reduced ejection fraction (HFrEF). This prospective randomized controlled trial will compare changes in the muscle mass in the arms and the legs (appendicular lean mass) in patients with HFrEF randomized between 3 groups of no, low- or high-dose protein supplementation. The dietary protein supplementation will be Ensure(R) products manufactured by Abbott Nutrition. The Investigators hypothesize that skeletal muscle wasting in HFrEF is promoted by neurohumoral activation of catabolic metabolism (such as GDF-15 and ActRII pathways) and can be at least partially reversed by increased dietary protein intake. It is anticipated that this study will determine whether dietary protein supplementation helps to prevent muscle wasting and will advance understanding of the GDF-15 and ActRII muscle wasting pathways.
The objectives of this study are to: 1. Establish whether combined β-lactoglobulin supplementation and resistance training for 1 week prior to 5 days of limb immobilisation will attenuate the decrease in integrated free-living rates of MPS during short-term muscle disuse. 2. Establish whether combined β-lactoglobulin supplementation and resistance training for 1 week prior to limb immobilisation will attenuate the decrease in muscle mass and strength during short-term muscle disuse.
As people age, muscle mass and function is lost and exercise training is an important way to reduce the effects of this and remain independent. However, not everyone can perform this exercise and the muscle responses to exercise are often reduced in older people. So far there has been no drug found to specifically treat or reduce this problem. Muscle size depends on the balance of muscle protein breakdown and synthesis (building). This balance is regulated by multiple signals within the body, but a particular molecule - the mechanistic target of rapamycin (mTOR), is known to play an important role. For protein synthesis to build up the muscles, this pathway is needed to start the process when triggered by eating protein or exercise. Although this would suggest that mTOR activity is good, excessive levels of this signalling seem to have negative impacts on muscle maintenance with age. In animal studies, blocking mTOR signalling has stopped the development of a number of age-related diseases and increased health-span. Drugs that block this pathway (e.g. Rapamune) reduce the stimulation of muscle protein synthesis, possibly through changing the immune system, but conversely have also been shown to increase muscle size and reduce markers of nerve supply loss. This means that drugs which block the mTOR pathway could, in older people, help to reduce the negative impacts of excessive mTOR signalling on muscle size and function. The investigators aim to recruit 16 healthy male volunteers over 50 years old to investigate how the drug Rapamune (which blocks the mTOR pathway) affects aged human muscle both on its own and when combined with resistance exercise training.