Clinical Trials Logo

Muscle Atrophy clinical trials

View clinical trials related to Muscle Atrophy.

Filter by:

NCT ID: NCT06253104 Recruiting - Heart Failure Clinical Trials

Changes in Skeletal Muscle Thickness in Patients With Acute Heart Failure

Start date: February 19, 2024
Phase:
Study type: Observational

This study aims to determine, via skeletal muscle ultrasound (US), the extent, timing and relationship between skeletal muscle mass loss and outcomes after orthotropic heart transplantation (OHT) and left ventricular assist device (LVAD) implantation amongst patients with cardiogenic shock. Advanced therapies such as OHT and VADs in the heart failure (HF) population may promote skeletal muscle mass and subsequent quality of life, but there is a lack of literature assessing muscle mass changes in HF patients before and after advanced therapies using US imaging. Therefore this observational study will provide further insight into the 1) changes in lean body mass during critical illness and 2) the feasibility of using bedside US to assess lean body mass in the inpatient setting.

NCT ID: NCT06238609 Recruiting - Muscle Weakness Clinical Trials

Neuromodulation for Prevention of Intensive Care Unit Acquired Weakness and Post Intensive Care Syndrome

Start date: August 28, 2023
Phase: Phase 1
Study type: Interventional

Post-intensive care syndrome (PICS) encompasses persistent physical, cognitive, and psychiatric symptoms following ICU discharge, commonly triggered by serious conditions such as respiratory failure, sepsis, and mechanical ventilation. PICS prevalence is reported to be as high as 84% up to 12 months in patients with at least 2 days spent in the ICU or with mechanical ventilatory support. As a consequence, many patients do not return to they former level of function for weeks, months and even years. Muscular affection manifested by muscle weakness is particularly seen and is provoked by a combination of damage to the nerves or directly the muscles fibers. This affection is referred to as CU-Acquired Weakness (ICUAW). One third of the time, lower extremities are affected, often due to prolonged immobilization or sedation. Evidence suggests that early mobilization reduces the incidence of ICUAW at discharge and improves the number of patients able of stand. However achieving this early intervention is not always feasible due to time or personnel constraints. The purpose of the study is to examine the effectiveness of lower extremity neuromodulation for prevention of muscle deconditioning in patients admitted to the ICU.

NCT ID: NCT06234826 Recruiting - Critical Illness Clinical Trials

Skeletal Muscle Wasting in ICU Patients

IC-MPS
Start date: April 17, 2023
Phase:
Study type: Observational

Muscle wasting occurs rapidly in critically ill patients and impacts both short and long term outcomes. Altered protein metabolism drives muscle loss in ICU patients, with muscle protein breakdown exceeding muscle protein synthesis (MPS). Interventions aimed at attenuating muscle loss by stimulating MPS rates are hampered by a lack of knowledge on altered muscle protein turnover rates during critical illness. Only a few studies have specifically assessed muscle protein synthesis by using contemporary intravenous stable isotope infusions, which allows the assessment of MPS over a short (<9 hours) period of time. Results from such acute studies can be difficult to extend or translate into long-term clinical practice and outcomes. Oral deuterated water (2H2O) dosing provides an alternative method that can be utilized to extend the measurement of muscle protein synthesis over a period of several days or weeks. It could therefore provide a valuable tool to study muscle protein synthesis during ICU admission and the impact of different anabolic interventions. Although multiple studies using the deuterated water methodology have been performed in both healthy volunteers and patients, it has not yet been performed in critically ill patients. In this prospective study the investigators aim to assess fractional rates of muscle protein synthesis over a period of (maximal) 7 days in critically ill patients admitted to the intensive care unit. Secondly, the investigators aim to assess mechanisms of acute muscle wasting on an microscopic, ultrastructural and molecular level. Furthermore, the investigators aim to investigate to what extent muscle fibre size is recovered 3 months after ICU discharge.

NCT ID: NCT06228742 Recruiting - Muscle Atrophy Clinical Trials

Molecular Mechanisms Underlying Anabolic Resistance to Protein Intake During Muscle Disuse

Start date: February 20, 2024
Phase: N/A
Study type: Interventional

This study will characterize intramuscular molecular mechanisms underlying anabolic resistance to protein ingestion during muscle disuse. Adults (n=12) will be studied using a unilateral leg immobilization model in which one leg will be randomly assigned to immobilization and the contralateral, active leg used as a within-subjects control. Immobilization will be implemented for five days using a rigid knee brace, during which time participants will ambulate using crutches. Integrated ribonucleic acid (RNA) synthesis will be determined during immobilization in the immobilized and non-immobilized legs using ingested deuterium oxide, salivary and blood sampling, and muscle biopsies. Immediately after immobilization, muscle biopsies will be collected before and 90 mins after consuming 25 g of whey protein from the immobilized and non-immobilized legs to characterize the intramuscular molecular response to protein feeding. Serial blood samples will be collected during that time to characterize the circulating metabolic response to protein ingestion. Knowledge generated from this effort will inform the development of targeted interventions for mitigating anabolic resistance to protein ingestion that develops during periods of muscle disuse.

NCT ID: NCT06088550 Completed - Muscle Atrophy Clinical Trials

Effect of Branched-chain Amino Acid Supplementation and Exercise on Muscle Quantity and Quality in Cirrhosis

Start date: November 1, 2020
Phase: N/A
Study type: Interventional

Introduction: Ultrasound can be used to monitor muscle mass during interventional approaches in patients with liver cirrhosis. The aim: To investigate the effect of branched-chain amino acid (BCAA) supplementation and/or muscle exercise on ultrasound-measured quadriceps muscle thickness and echo intensity, as well as on muscle strength, performance, and nutritional assessment in patients with cirrhosis. Patients & Methods: This is a randomized controlled study that included 220 liver cirrhosis patients with Child-Pugh B & C classes. They were randomized into a control group comprising 55 patients who received only the standard care, and interventional groups comprising 165 patients equally distributed into three groups, they received in addition to standard care, BCAA, programmed exercise, or BCAA and programmed exercise respectively. At baseline and after 28 days, all participants were subjected to ultrasound-measured quadriceps muscle thickness and echo intensity, in addition to handgrip strength, short physical performance battery (SPPB), anthropometric measures, hematological and biochemical assessment, MELD score measurement, nutritional assessment using 7- subjective global assessment score (SGA).

NCT ID: NCT06050668 Not yet recruiting - Muscle Atrophy Clinical Trials

Essential Amino Acid Supplementation for Femoral Fragility Fractures

Start date: February 2024
Phase: N/A
Study type: Interventional

This trial will evaluate the impact of 6 weeks of postoperative essential amino acid (EAA)-based supplementation on muscle morphology after femoral fragility fracture. This trial will assess the ability of EAA-based to increase skeletal muscle metabolic activity, reduce inflammation, and induce muscle fiber hypertrophy, as well as preserve skeletal muscle mass and physical performance up to 6 months after injury. Participants will be randomized in a 1:1 ratio to 1) standard of care (no dietary intervention) or 2) EAA-based supplementation.

NCT ID: NCT05919940 Recruiting - Quality of Life Clinical Trials

Improved Muscle Metabolism by Combination of Muscle Activation and Protein Substitution ( IMEMPRO )

Start date: June 27, 2023
Phase: N/A
Study type: Interventional

Intensive Care Unit Acquired Weakness (ICUAW) describes muscle weakness that occurs in around 40% of patients during an intensive care stay. The morbidity and mortality of these patients is significantly increased over a 5-year period. The aim of this study is to investigate the combined effect of early enteral high-protein nutrition and early muscle activation on muscle atrophy in critically ill patients. The study will include 40 patients (20 intervention, 20 observation) with requirement for enteral nutrition at time of inclusion. In the intervention group the maximum possible level of mobilization is carried out and muscles are activated twice a day using neuromuscular electrical stimulation (NMES). The nutrition plan of the intervention group is based on the applicable guidelines for intensive care medicine with exception of increased protein intake. The control group receives therapy without deviating from the standard according of the DGEM guideline. The study aims to show that the decrease in muscle mass is significantly less than in the control group (primary hypothesis) via ultrasound of the rectus femoris muscle and in case of given consent muscle biopsy. As secondary hypothesis it is examined whether the combination of early high protein intake and muscle activation improves muscle strength and endurance.

NCT ID: NCT05888714 Not yet recruiting - Clinical trials for Spinal Cord Injuries

Pilot Study for Peripheral Neuromuscular Electrical Stimulation of the Quadriceps Muscle

Start date: June 1, 2023
Phase: N/A
Study type: Interventional

Feasibility study of a new medical device that will evaluate the usability and effectiveness of a cycle ergometer device associated with neuromuscular electrical stimulation (FES cycling). The study's objective is to evaluate the effect of the application of functional electrical stimulation of the new device on participants' quadriceps muscle strength in comparison to a medical device with similar characteristics and to a control group. Secondarily, the study will compare the usability of the two medical devices as evaluated by the participants and the therapists who apply the treatment, as well as the participants' satisfaction with the treatment, identifying possible adverse effects.

NCT ID: NCT05823857 Recruiting - Clinical trials for Chronic Low-back Pain

Effect of an Aquatic Exercise Program in Patients With Chronic Low Back Pain

Start date: November 1, 2022
Phase: N/A
Study type: Interventional

The goal of this pilot randomized controlled trial is to compare the effects of aquatic therapy versus standard care on paraspinal and gluteal morphology and function in individuals with chronic low back pain.The main questions it aims to answer are: 1. What are the effects of aquatic therapy versus standard care on a) paraspinal and gluteal muscle size, composition (e.g., fatty infiltration) and b) lumbar and gluteal muscle strength in individuals with chronic LBP? 2. Is aquatic therapy more effective than standard care to improve pain, function and psychological factors (e.g., kinesiophobia, catastrophizing, anxiety, and depression)? 3. Is using a digital application "play the pain" feasible to monitor pain levels and the activities that participants used to cope with pain? Participants will be assigned to either the aquatic therapy group or standard care group where they will undergo a 10-week intervention including two 60-minute session per week.

NCT ID: NCT05735236 Recruiting - Muscle Weakness Clinical Trials

Comparison of Methods in Post Operative Knee Arthroscopy Rehabilitation

ACL BFR
Start date: November 8, 2022
Phase: N/A
Study type: Interventional

The aim of this study is to investigate the efficacy of blood flow restriction (BFR) therapy in post operative rehabilitation following knee arthroscopy.