View clinical trials related to Muscle Atrophy.
Filter by:The purpose of the proposed research is to define whether there are differences between females and males (i.e. sex-based differences) in the metabolic and mechanistic regulation of disuse-induced muscle atrophy in vivo in humans.
Residual limping after total hip arthroplasty is empirically associated with the use of lateral approach but has been reported in litterature even with the use of posterior approach. The purpose of this clinical trial is to compare the risk of residual limping one year after total hip arthropasty between lateral and posterior approach.
An open-label dose escalation study to assess the safety and tolerability of IMMUNA(IMM01-STEM) in participants with muscle atrophy related to knee osteoarthritis
Residual limping after total hip arthroplasty is a serious complication that lacks effective treatment. The purpose of this study is to evaluate a surgical treatment for residual limping and compare its results with non-surgical treatment. Our hypothesis is that surgical treatment followed by physiotherapy increases hip function and reduces limping compared with non-surgical treatment with physiotherapy alone.
Muscle loss (ultrasound quadricep muscle) and muscle strength (handgrip and knee extension strength) will be compared between COVID-19 and non COVID-19 critically ill patients.
In a randomised placebo-controlled trial assess effects of zoledronic acid for prevention of bone and muscle loss after bariatric surgery.
Patients lose a significant amount of muscle following major abdominal surgery. This is partly due to a catabolic response to the surgical insult and inflammation, but is also probably due to a lack of muscle use secondary to immobility. This study will aim to assess whether some or even all of postoperative muscle loss in the upper leg muscle group is preventable through electrical muscle stimulation to mimic physical activity.
The goal of this study is to determine the impact of pre-diabetes and type 2 diabetes on muscle atrophy during a period of bed rest and recovery of muscle mass, strength, and physical function following bed rest.
The primary aim of this research proposal is to examine whether this novel training program approach is capable to tackle excessive loss in muscle mass, function and contractile capacity with aging. Previous investigations have universally shown a dramatic loss in type II muscle fibers, while certain countermeasures in their follow-up studies were generally ineffective and limited to attenuate this phenomenon. Probably, they failed to meet recruitment threshold of larger motor units and subsequently innervate type II muscle fibers. Furthermore, previous investigations also failed to provide any data on specific blood markers that may provide additional insight into muscle fiber loss with aging. Muscle fibers type II play a crucial role in the human ability to produce as much as force as possible over a limited time-frame (e.g. 100-200 ms) to counteract unexpected perturbations during stair climbing for example and thus avoiding falls. Therefore, this data collection would be noteworthy in particular, especially for this population due to health-related outcomes and healthy aging process. Since age-related decline is accelerated already after short bouts of physical inactivity, with small recovery potential, any attempt to counteract age-related and disuse-related decline have high clinical significance. Based on the findings, data collected may aid in development of safety guidelines and protocols aimed at reducing health risks in this specific population. Importantly, in case the aforementioned hypotheses are confirmed, present findings may offer important information to the healthcare system, especially for reducing economic burden.
Visits to the emergency department (ED) for chest pain are extremely common and require a safe, rapid and efficacious treatment algorithm to exclude a possible AMI. These diagnostic algorithms are partly based on an important laboratory value, which showed growing utility in the diagnostic and prognostic of many cardiovascular diseases in the last years : cardiac troponin. However, some patients with muscle disease often present with unexplained elevated high-sensitive cardiac Troponin T (hs-cTnT) levels in the absence of cardiac disease. The investigators aim at the characterization of the behaviour of this biomarker and its alternative (high-sensitive cardiac Troponin I), which will have important clinical implications on patients management.