View clinical trials related to Movement Disorders.
Filter by:This study uses a patented type of exercise poles, developed to assist runners rehabilitating from lower body injuries. These poles may offer older adults improved stability, reduced fear of falling, and lessened lower body pain when exercise walking.
The purpose of this research study is to test the safety and effectiveness of the study drug, Talampanel, when used to treat patients with involuntary movements known as dyskinesias, as a result of treatment to Parkinson's disease. It is not clear why people with Parkinson's disease develop involuntary movements (dyskinesias) but studies show that blocking receptors in the brain for a chemical called glutamate decreases these movements. Talampanel is a drug which blocks these receptors.
This study will use transcranial magnetic stimulation to examine how the brain controls movement by sending messages to the spinal cord and muscles and what goes wrong with this process in disease. Normal healthy volunteers between the ages of 18 and 65 years may be eligible to participate. In transcranial magnetic stimulation, an insulated wire coil is placed on the subject's scalp or skin. Brief electrical currents are passed through the coil, creating magnetic pulses that stimulate the brain. During the stimulation, participants will be asked to tense certain muscles slightly or perform other simple actions. The electrical activity of the muscle will be recorded on a computer through electrodes applied to the skin over the muscle. In most cases, the study will last less than 3 hours.
This study will use transcranial magnetic stimulation to examine how the brain controls movement by sending messages to the spinal cord and muscles and what goes wrong with this process in disease. Normal healthy volunteers 18 years of age and older may be eligible to participate. In transcranial magnetic stimulation, an insulated wire coil is placed on the subject's scalp or skin. Brief electrical currents are passed through the coil, creating magnetic pulses that stimulate the brain. During the stimulation, participants will be asked to tense certain muscles slightly or perform other simple actions. The electrical activity of the muscle will be recorded on a computer through electrodes applied to the skin over the muscle. In most cases, the study will last less than 3 hours.
Patients with Parkinson's disease are missing the chemical neurotransmitter dopamine. This occurs as a result of destructive changes in an area of the brain responsible for making dopamine, the basal ganglia. Patients with the disease experience, rigid muscles, stooped posture, and a shuffling-type walk (gait). In this study researchers plan to evaluate the effectiveness of the drug eliprodil for the treatment of Parkinson's Disease. Eliprodil works by blocking special receptors (NMDA) that are associated with the symptoms of Parkinson's Disease.
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, spinal cord and nerve roots). The procedure is conducted by transmitting a magnetic signal into the brain to stimulate an area of the body. Electrodes (small pieces of metal taped to areas of the body) are used in order to measure electrical activity. A magnetic signal is sent from a metal instrument held close to the patient's head, to an area of the brain responsible for motor activity of a certain area of the body. The electrodes pick up and record the electrical activity in the muscles. This study will employ the use of TMS to diagnose neurological disorders that affect the motor cortex or the corticospinal tract. Normal subjects are sometimes studied to investigate normal activity of the nervous system and to train doctors in clinical neurophysiology and electrodiagnostic medicine at the National Institutes of Health (NIH).
The purpose of this protocol is to identify families with inherited neurologic conditions, especially movement disorders, to evaluate affected and unaffected individuals clinically, and to obtain blood samples for genetic analysis.
The problems in motor activity associated with Parkinson's disease are still poorly understood. Patients with Parkinson's disease often suffer from extremely slow movements (bradykinesia) which result in the inability to perform complex physical acts. Imaging studies of the brain have provided researchers with information about the specific areas in the brain associated with these motor difficulties. One particular area involved is the surface of the brain called the cerebral cortex. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can be used to stimulate brain activity and gather information about brain function. It is very useful when studying the areas of the brain related to motor activity (motor cortex, corticospinal tract, and corpus callosum). Repetitive transcranial magnetic stimulation (rTMS) involves the placement of a cooled electromagnet with a figure-eight coil on the patient's scalp and rapidly turning on and off the magnetic flux. This permits non-invasive, relatively localized stimulation of the surface of the brain (cerebral cortex). The effect of magnetic stimulation varies, depending upon the location, intensity and frequency of the magnetic pulses. Researchers plan to study the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on complex motor behavior of patients with Parkinson's disease. In order to measure its effectiveness, patients will be asked to perform complex tasks, such as playing the piano while receiving transcranial magnetic stimulation.
Myoclonus is a condition related to epilepsy of involuntary twitching or jerking of the limbs. The purpose of this study is to determine if stimulation of the brain with magnetic pulses can decrease myoclonus. Researchers believe that this may be possible because in studies on normal volunteers, magnetic stimulation made areas of the brain difficult to activate for several minutes. In addition, early studies on patients with myoclonus have shown magnetic stimulation to be effective at decreasing involuntary movements. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can be used to stimulate brain activity and gather information about brain function. It is very useful when studying the areas of the brain and spinal cord related to motor activity (motor cortex and corticospinal tract). Repetitive transcranial magnetic stimulation (rTMS) involves the placement of coil of wire (electromagnet) on the patient's scalp and rapidly turning on and off the electrical current. The changing magnetic field produces weak electrical currents in the brain near the coil. This permits non-invasive, relatively localized stimulation of the surface of the brain (cerebral cortex). The effect of magnetic stimulation varies, depending upon the location, intensity and frequency of the magnetic pulses. Researchers plan to use rTMS for 10 days on patients participating in the study. The 10 day period will be broken into 5 days of active repetitive magnetic stimulation and 5 days of placebo "ineffective" stimulation. At the end of the 10 day period, if the results show that rTMS was beneficial, patients may undergo an additional 5 days of active rTMS.
The purpose of this study is to improve understanding of neurological conditions. Patients participating in this study will continue receiving medical care, routine laboratory tests, and diagnostics tests (X-rays, CT-scans, and nuclear imaging), from their primary care physician. Doctors at the NIH plan to follow these patients and offer advice and assistance to their primary care physicians.