Clinical Trials Logo

Clinical Trial Summary

In this study, the investigators will stratify depressed subjects a priori based on CRP levels to test the hypothesis that eicosapentaenoic (EPA) would be more efficacious to treat depression in subjects with high CRP levels compared to subjects with low CRP levels. Depressed subjects, with ongoing stabilized antidepressive treatment who remain clinically depressed, will be enrolled in an "Inflammation group" or in a "Non-inflammation group" depending on baseline levels of CRP. Subjects in both groups will receive EPA enriched omega-3 fatty acids for 8 weeks, added to their pre-stabilized antidepressant medication.


Clinical Trial Description

Background Increased mean levels of peripheral inflammatory markers have repeatedly been reported in individuals with major depression compared to controls, although there is considerable overlap between groups. As further evidence for a role of inflammation in major depression, 20-60% of patients receiving treatment for viral hepatitis and certain forms of cancer with the cytokine interferon-alpha will develop depressive symptoms. Interestingly, some authors have suggested that the association between inflammation and depression is symptom specific, i.e. there might be a subtype of "inflammation-related depression" with a specific phenotype. Although it still remains unclear if the immune abnormalities often seen in depressed subjects derive from changes in the periphery or in the central nervous system (or both), animal studies have shown that by counteracting the effects of pro-inflammatory cytokines in either the blood or the brain, depressive-like behavior in animals can be mitigated. These animal studies, along with data from several clinical studies pertaining to this, suggest that interventions primarily targeting peripheral inflammation may be useful in treating psychiatric symptoms. Although the exact mechanisms by which increased inflammation may give rise to depressive symptoms remain unclear, there are several potential downstream pathways that may be involved including accelerated cellular aging, mitochondrial dysfunction, and oxidative stress. In search for a potential antidepressant that could be tested in clinical trials in which subjects are selected a priori based on inflammatory markers, the investigators turn to eicosapentaenoic (EPA), an omega-3 (n-3) fatty acid with anti-inflammatory properties. The ability of dietary n-3 fatty acids to mitigate the inflammatory response has been shown in human and animal studies. EPA and Docosahexaenoic acid (DHA) are the two major n-3 fatty acids found in oily fish and fish oil supplements, and both have shown anti-inflammatory properties. Supplementation of EPA and DHA in individuals with cardiovascular disease results in decreased plasma levels of CRP. N-3 fatty acids also have several other anti-inflammatory properties including i) Decreased chemotaxis of neutrophils and monocytes, ii) Decreased expression of adhesion molecules (e.g. ICAM & VCAM) on the surface of immune cells and in the circulation, iii) Decreased production of prostaglandins, iv) Increased synthesis of anti-inflammatory molecules such as resolvins and protectins, and v) Inhibition of T-cell proliferation. The mechanisms underlying these effects are not fully understood but likely involves n-3 fatty acids acting via cell surface and intracellular receptors controlling inflammatory cell signaling and gene expression patterns. In addition to the well-established anti-inflammatory effects of n-3 fatty acids, they may also have beneficial effects on oxidative stress and cell aging parameters such as leukocyte telomere length and telomerase activity. However, more research is needed in order to confirm these relationships, and therefore the investigators will, in addition to assessing inflammatory markers, also study the effects of n-3 fatty acids on markers of cellular aging and oxidative stress. Some, but not all, previous studies have shown that EPA is superior to placebo in treating unipolar or bipolar depression. Several caveats have, however, been issued when interpreting the results from these studies, including small and perhaps clinically irrelevant effect sizes, as well as potential publication bias. Generally, n-3 preparations with high doses of EPA relative to DHA have been shown to be more efficacious in treating depression. Interestingly, a double blind placebo-controlled RCT showed that that EPA (but not DHA) was effective in preventing interferon-alpha induced depression in hepatitis C subjects, consistent with the notion that EPA may have antidepressant effect in "inflammatory depression". In line with this notion, a recent a proof-of-concept study showed that high inflammation at baseline was associated with a better antidepressant effect of EPA, but not DHA, enriched n-3 compared to placebo. That study stratified subjects post-hoc based on inflammatory markers, whereas our approach will be to select study subjects a priori based on validated cut-offs for CRP. This is the next step in developing a personalized medicine paradigm for depression. The main aims of the study are to test if i) EPA enriched n-3 (added to stabilized ongoing treatment) is efficacious in treating depressed patients, but only in subjects with prospectively ascertained elevations in baseline CRP, ii) Changes in inflammatory markers over the course of treatment mediate this effect, and iii) Clinical trial designs utilizing prospectively-ascertained biomarkers to predict response are feasible and thereby pave the way for personalized medicine in psychiatry. Specific objective 1: To determine whether the antidepressant effect of n-3 EPA is greater in the Inflammation group than in the Non-inflammation group, controlling for baseline depression rating. Hypothesis (H) 1: The antidepressant effect of n-3 EPA is greater in the Inflammation group than in the Non-inflammation group. Specific objective 2: To determine whether changes in inflammatory, oxidative stress and cell aging markers from baseline to end of treatment correlate with antidepressant effect. H 2: Change in inflammatory and cell aging markers with n-3 EPA treatment will be directly correlated with changes in depression ratings. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03143075
Study type Interventional
Source Region Skane
Contact
Status Completed
Phase N/A
Start date August 1, 2017
Completion date May 9, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT05537558 - Precision Medicine for the Prediction of Treatment (PROMPT) Response (PROMPT)
Terminated NCT02192099 - Open Label Extension for GLYX13-C-202, NCT01684163 Phase 2
Completed NCT03142919 - Lipopolysaccharide (LPS) Challenge in Depression Phase 2
Recruiting NCT05547035 - Identification of Physiological Data by a Wearable Monitor in Subjects Suffering From Major Depression Disorders N/A
Terminated NCT02940769 - Neurobiological Effects of Light on MDD N/A
Recruiting NCT05892744 - Establishing Multimodal Brain Biomarkers for Treatment Selection in Depression Phase 4
Recruiting NCT05537584 - SMART Trial to Predict Anhedonia Response to Antidepressant Treatment Phase 4
Active, not recruiting NCT05061706 - Multicenter Study of Lumateperone as Adjunctive Therapy in the Treatment of Patients With Major Depressive Disorder Phase 3
Completed NCT04479852 - A Study of the Safety and Efficacy of SP-624 in the Treatment of Adults With Major Depressive Disorder Phase 2
Recruiting NCT04032301 - Repeated Ketamine Infusions for Comorbid PTSD and MDD in Veterans Phase 1
Recruiting NCT05527951 - Enhanced Measurement-Based Care Effectiveness for Depression (EMBED) Study N/A
Completed NCT03511599 - Cycloserine rTMS Plasticity Augmentation in Depression Phase 1
Recruiting NCT04392947 - Treatment of Major Depressive Disorder With Bilateral Theta Burst Stimulation N/A
Recruiting NCT05895747 - 5-HTP and Creatine for Depression R33 Phase Phase 2
Recruiting NCT05273996 - Predictors of Cognitive Outcomes in Geriatric Depression Phase 4
Recruiting NCT05813093 - Interleaved TMS-fMRI in Ultra-treatment Resistant Depression N/A
Recruiting NCT05135897 - The Neurobiological Fundaments of Depression and Its Relief Through Neurostimulation Treatments
Enrolling by invitation NCT04509102 - Psychostimulant Augmentation of Repetitive TMS for the Treatment of Major Depressive Disorder Early Phase 1
Recruiting NCT06145594 - EMA-Guided Maintenance TMS for Depression N/A
Recruiting NCT06026917 - Assessing Dopamine Transporter Occupancy in the Patients With Depression Brain With Toludesvenlafaxine Hydrochloride Extended-Release Tablets Using 11C-CFT Positron Emission Tomography (PET) Phase 4