Acute Lung Injury Clinical Trial
Official title:
Primary Resuscitation Using Airway Pressure Release Ventilation Improves Recovery From Acute Lung Injury or Adult Respiratory Distress Syndrome and Reduces All Cause Mortality Compared to ARDS Net Low Tidal Volume-Cycled Ventilation.
Traditional modes of ventilation have failed to improve patient survival. Subsequent observations that elevated airway pressures observed in traditional forms of ventilation resulted in barotrauma and extension of ALI lead to the evolution of low volume cycled ventilation as a potentially better ventilatory modality for ARDS. Recent multicenter trials by the NIH-ARDS network have confirmed that low volume ventilation increases the number of ventilatory free days and improves overall patient survival. While reducing mean airway pressure has reduced barotrauma and improved patient survival, it has impaired attempts to improve alveolar recruitment. Alveolar recruitment is important as it improves V/Q mismatch, allows reduction in FIO2 earlier, and decreases the risk of oxygen toxicity. Airway pressure release ventilation (APRV) is a novel ventilatory modality that utilizes controlled positive airway pressure to maximize alveolar recruitment while minimizing barotrauma. In APRV, tidal ventilation occurs between the increase in lung volumes established by the application of CPAP and the relaxation of lung tissue following pressure release. Preliminary studies have suggested that APRV recruits collapsed alveoli and improves oxygenation through a restoration of pulmonary mechanics, but there are no studies indicating the potential overall benefit of APRV in recovery form ALI/ADRS.
Low volume ventilation may increase number of ventilatory free days and may improve overall patient survival. While reducing mean airway pressure has reduced barotrauma and improved patient survival, it has impaired attempts to improve alveolar recruitment. Alveolar recruitment is important as it improves V/Q mismatch, allows reduction in FIO2 earlier, and decreases the risk of oxygen toxicity. Airway pressure release ventilation (APRV) is a novel ventilatory modality that utilizes controlled positive airway pressure to maximize alveolar recruitment while minimizing barotrauma. In APRV, tidal ventilation occurs between the increase in lung volumes established by the application of CPAP and the relaxation of lung tissue following pressure release. Preliminary studies have suggested that APRV recruits collapsed alveoli and improves oxygenation through a restoration of pulmonary mechanics, but there are no studies indicating the potential overall benefit of APRV in recovery form ALI/ADRS. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03937947 -
Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
|
||
Completed |
NCT04247477 -
Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS
|
N/A | |
Completed |
NCT03315702 -
Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
|
||
Not yet recruiting |
NCT02693912 -
Changes in Alveolar Macrophage Function During Acute Lung Injury
|
N/A | |
Completed |
NCT01659307 -
The Effect of Aspirin on REducing iNflammation in Human in Vivo Model of Acute Lung Injury
|
Phase 2 | |
Unknown status |
NCT01186874 -
Epidemiology Research on Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) in Adult ICU in Shanghai
|
N/A | |
Completed |
NCT01552070 -
Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS)
|
Phase 2 | |
Withdrawn |
NCT00961168 -
Work of Breathing and Mechanical Ventilation in Acute Lung Injury
|
N/A | |
Recruiting |
NCT00759590 -
Comparison of Two Methods to Estimate the Lung Recruitment
|
N/A | |
Completed |
NCT02475694 -
Acute Lung Injury After Cardiac Surgery: Pathogenesis
|
N/A | |
Completed |
NCT00736892 -
Incidence of Acute Lung Injury: The Alien Study
|
||
Completed |
NCT00825357 -
Biological Markers to Identify Early Sepsis and Acute Lung Injury
|
N/A | |
Terminated |
NCT00263146 -
Recruitment Maneuvers in ARDS: Effects on Respiratory Function and Inflammatory Markers.
|
N/A | |
Completed |
NCT00188058 -
Comparison of 2 Strategies of Adjustment of Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT00234767 -
Study of the Economics of Pulmonary Artery Catheter Use in Patients With Acute Respiratory Distress Syndrome (ARDS)
|
Phase 3 | |
Recruiting |
NCT02598648 -
Role and Molecular Mechanism of Farnesoid X Receptor(FXR) and RIPK3 in the Formation of Acute Respiratory Distress Syndrome in Neonates
|
N/A | |
Recruiting |
NCT02948530 -
Measurement of Lung Elastance and Transpulmonary Pressure Using Two Different Methods (Lungbarometry)
|
||
Completed |
NCT01532024 -
Exploratory Clinical Study of Neutrophil Activation Probe (NAP) for Optical Molecular Imaging in Human Lungs
|
Early Phase 1 | |
Recruiting |
NCT01992237 -
Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients
|
N/A | |
Completed |
NCT01486342 -
PET Imaging in Patients at Risk for Acute Lung Injury
|
N/A |