Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04613167
Other study ID # GEBI
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date November 10, 2020
Est. completion date October 1, 2021

Study information

Verified date October 2020
Source University Medical Centre Ljubljana
Contact Miran Šebeštjen, prof.
Phone +38615228541
Email miran.sebestjen@guest.arnes.si, miran.sebestjen@kclj.si
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The aim of study is to examine the relationship between lipid subfractions, inflammation and structural-functional properties of the arterial wall in patients with premature coronary heart disease, to study genetic polymorphisms that determine lipid subfractions concentration on the functional and morphological properties of the arterial vascular wall in patients with early coronary heart disease, to study the effect of alirocumab and evolocumab on lipid subfractions, inflammation and structural-functional properties of arterial wall in patients with early coronary atherosclerosis and to study the influence of NOS-3 gene expression on the functional and morphological properties of the arterial vascular wall in the same patients. Impaired blood fat metabolism and chronic inflammation are intertwined as possible causes of atherosclerosis. Lipoprotein (a) (Lp (a)) is an important risk factor for coronary heart disease and a prognostic predictor in patients after myocardial infarction, but recent research suggests that subtilisin-kexin convertase type 9 (PCSK9) inhibitors are the only drugs that significantly reduce serum Lp (a) concentration. However, there are no data on the relationship between Lp (a) values and polymorphisms for Lp (a), indicators of inflammation and impaired arterial function, and response to treatment with various PCSK9 inhibitors in patients with early coronary heart disease.


Description:

Impaired blood fat metabolism and chronic inflammation are intertwined as possible causes of atherosclerosis. Lipoprotein (a) (Lp (a)) is a specific subfraction of lipoprotein that is an independent risk factor for coronary heart disease and at the same time predicted residual risk in patients with pre-existing atherosclerosis, regardless of serum LDL-cholesterol concentration. Circulating levels of Lp(a) are mainly genetically determined and varies according to ethnic group. Lp(a) has many functions, which include atherosclerotic, prothrombotic and pro-inflammatory roles. The gene encoding apo (a); LPA, is located on the long arm of chromosome 6 (6q2,6-2,7) and most variants in Lp (a) can be explained by genetic diversity in LPA. To date, the most studied genetic variant is the Kringle-IV type-2 (KIV2) polymorphism, which explains 30-70% of the diversity in Lp (a) in the population. Some KIV2 replicates are associated with smaller isoforms and higher plasma concentrations of Lp (a) which are causally and independently associated with coronary heart disease. Within LPA, the number of KIV2 copies, as well as one nucleotide polymorphism (SNP), rs3798220 and rs10455872, is associated with Lp (a) concentration and coronary heart disease. Recently 'Proprotein convertase subtilisin/kexin type 9' (PCSK9) inhibitors that act through non-specific reduction of Lp(a) are the only drugs that have shown effectiveness in clinical trials, to provide reductions in cardiovascular morbidity and mortality. The effects of PCSK9 inhibitors are not purely through Lp(a) reduction, but also through LDL cholesterol reduction. The early stage of the atherosclerosis process is characterized by endothelial cell damage, which results in impaired release and function of nitric oxide (NO) from the endothelium. NO is formed by endothelial NO synthetase (NOS-3) from the amino acid L-arginine, which is most pronounced in the vascular wall and is also most important in the process of atherosclerosis. The NOS-3 gene is located on chromosome 7; in the region 7q35-7q36. Functional polymorphisms are those that alter the expression or activity of NOS-3. Among them, rs2070744, rs3918226 and rs1799983 single nucleotide polymorphisms (SNP) are important. Variations in the expression and activity of NOS-3 genetic polymorphisms at exon 7 of the NOS-3 gene are associated with the incidence of myocardial infarction in very young patients who otherwise have a low atheromatous coronary artery load. Variations in the NOS-3 genes cause diversity in NO bioavailability and are responsible for endothelial dysfunction. A 6-month observational, prospective, and randomized study will include 70 patients with a first acute coronary syndrome (ACS) (including acute transmural myocardial infarction, nontransmural myocardial infarction or unstable angina pectoris) event before age 55 and Lp (a) levels above 1000 mg / L or Lp (a) above 600 mg / L and LDL above 2.6 mmol / L. With the gradual inclusion ("step-wedge") and randomization of patients, the investigators will also provide a control group that will include 30 patients. The investigators will do anamnesis, targeted clinical examination, take blood samples for laboratory measurements, ultrasound measure endothelium-dependent dilatation of the brachial artery and intima media thickness of carotid arteries, measure pulse wave and calculate carotid artery wall stiffness. Patients will be divided into three groups according to a randomization list. The first group will receive alirocumab, the second group evolocumab, and the third group will be the control group and will be included in the treatment after 6 months. During this time, the control group will not receive treatment with alirocumab or evolocumab, only standard treatment. After 6 months, the investigators will repeat all the mentioned investigations. Patients will be informed about the purpose and course of the study before starting it. All will participate voluntarily, without pressure or inappropriate instigation, which they will confirm by signing. The investigators hypotheses that in patients with early coronary artery disease Lp (a) and Lp (a) polymorphisms are associated with indicators of inflammation and structural-functional properties of the arterial wall; in patients with early coronary artery disease, PCSK9 inhibitors reduce the value of Lp (a), indicators of inflammation and structural and functional involvement of the arterial wall; in patients with early coronary artery disease, the influence of PCSK9 inhibitors on Lp (a), indicators of inflammation and structural-functional properties of the arterial wall depends on the presence of specific polymorphisms for Lp (a).


Recruitment information / eligibility

Status Recruiting
Enrollment 70
Est. completion date October 1, 2021
Est. primary completion date June 30, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years to 65 Years
Eligibility Inclusion Criteria: - at least 6 months after acute coronary syndrome, - up to 55 years at the time of first acute coronary syndrome - concentration Lp (a) above 1000 mg / L or Lp (a) above 600 mg / L and LDL above 2.6 mmol / L - optimally treated risk factors for cardiovascular events according to currently valid guidelines. Exclusion Criteria: - Age <18 years or > 65 years, - documented history of myocardial infarction less than 6 months before enrollment - secondary dyslipidemia, - severe renal disease (oGFR <30 ml / min), - moderate to severe liver disease (elevated transaminases above 3 times the norm, elevated bilirubin above 2 times the norm, elevated creatinine kinase above 3 times the norm), - acute illness 6 weeks before inclusion in the study, - history of allergic reaction to any ingredient in the drug, - pregnancy and lactation, - life expectancy less than 12 months, - unwillingness to participate or lack of availability for follow-up

Study Design


Intervention

Drug:
Alirocumab
The first group will receive alirocumab. Blood samples from all patients will be drawn for laboratory measurements and genetics determination. Ultrasound measurement of endothelium-dependent dilatation of the brachial artery, intima media thickness of carotid arteries and pulse wave will be measured.
Evolocumab
The second group will receive evolocumab. Blood samples from all patients will be drawn for laboratory measurements and genetics determination. Ultrasound measurement of endothelium-dependent dilatation of the brachial artery, intima media thickness of carotid arteries and pulse wave will be measured.
Control group
The third group will receive only optimal guidelines-based secondary preventive treatment. Blood samples from all patients will be drawn for laboratory measurements and genetics determination. Ultrasound measurement of endothelium-dependent dilatation of the brachial artery, intima media thickness of carotid arteries and pulse wave will be measured.

Locations

Country Name City State
Slovenia University Medical Centre Ljubljana-Department of Vascular diseases and dept. of Cardiology Ljubljana

Sponsors (1)

Lead Sponsor Collaborator
University Medical Centre Ljubljana

Country where clinical trial is conducted

Slovenia, 

References & Publications (17)

BERG K. A NEW SERUM TYPE SYSTEM IN MAN--THE LP SYSTEM. Acta Pathol Microbiol Scand. 1963;59:369-82. — View Citation

Chasman DI, Shiffman D, Zee RY, Louie JZ, Luke MM, Rowland CM, Catanese JJ, Buring JE, Devlin JJ, Ridker PM. Polymorphism in the apolipoprotein(a) gene, plasma lipoprotein(a), cardiovascular disease, and low-dose aspirin therapy. Atherosclerosis. 2009 Apr;203(2):371-6. doi: 10.1016/j.atherosclerosis.2008.07.019. Epub 2008 Jul 26. — View Citation

Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M; PROCARDIS Consortium. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009 Dec 24;361(26):2518-28. doi: 10.1056/NEJMoa0902604. — View Citation

Emerging Risk Factors Collaboration, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, Marcovina SM, Collins R, Thompson SG, Danesh J. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009 Jul 22;302(4):412-23. doi: 10.1001/jama.2009.1063. Review. — View Citation

Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, Haydock S, Hopper RV, Stephens NG, O'Shaughnessy KM, Brown MJ. A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation. 1999 Oct 5;100(14):1515-20. — View Citation

Julius U, Tselmin S, Schatz U, Fischer S, Bornstein SR. Lipoprotein(a) and proprotein convertase subtilisin/kexin type 9 inhibitors. Clin Res Cardiol Suppl. 2019 Apr;14(Suppl 1):45-50. doi: 10.1007/s11789-019-00099-z. — View Citation

Ma L, Chan DC, Ooi EMM, Barrett PHR, Watts GF. Fractional turnover of apolipoprotein(a) and apolipoprotein B-100 within plasma lipoprotein(a) particles in statin-treated patients with elevated and normal Lp(a) concentration. Metabolism. 2019 Jul;96:8-11. doi: 10.1016/j.metabol.2019.04.010. Epub 2019 Apr 14. — View Citation

Machado-Silva W, Alfinito-Kreis R, Carvalho LS, Quinaglia-E-Silva JC, Almeida OL, Brito CJ, Ferreira AP, Córdova C, Sposito AC, Nóbrega OT; Brasilia Heart Study Group. Endothelial nitric oxide synthase genotypes modulate peripheral vasodilatory properties after myocardial infarction. Gene. 2015 Sep 1;568(2):165-9. doi: 10.1016/j.gene.2015.05.042. Epub 2015 May 20. — View Citation

Maranhão RC, Carvalho PO, Strunz CC, Pileggi F. Lipoprotein (a): structure, pathophysiology and clinical implications. Arq Bras Cardiol. 2014 Jul;103(1):76-84. Review. English, Portuguese. — View Citation

Marcovina SM, Albers JJ. Lipoprotein (a) measurements for clinical application. J Lipid Res. 2016 Apr;57(4):526-37. doi: 10.1194/jlr.R061648. Epub 2015 Dec 4. Review. — View Citation

Ober C, Nord AS, Thompson EE, Pan L, Tan Z, Cusanovich D, Sun Y, Nicolae R, Edelstein C, Schneider DH, Billstrand C, Pfaffinger D, Phillips N, Anderson RL, Philips B, Rajagopalan R, Hatsukami TS, Rieder MJ, Heagerty PJ, Nickerson DA, Abney M, Marcovina S, Jarvik GP, Scanu AM, Nicolae DL. Genome-wide association study of plasma lipoprotein(a) levels identifies multiple genes on chromosome 6q. J Lipid Res. 2009 May;50(5):798-806. doi: 10.1194/jlr.M800515-JLR200. Epub 2009 Jan 5. — View Citation

Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016 Jan 10;575(2 Pt 3):584-99. doi: 10.1016/j.gene.2015.09.061. Epub 2015 Sep 28. Review. — View Citation

Rawther T, Tabet F. Biology, pathophysiology and current therapies that affect lipoprotein (a) levels. J Mol Cell Cardiol. 2019 Jun;131:1-11. doi: 10.1016/j.yjmcc.2019.04.005. Epub 2019 Apr 12. Review. — View Citation

Rehberger Likozar A, Zavrtanik M, Šebeštjen M. Lipoprotein(a) in atherosclerosis: from pathophysiology to clinical relevance and treatment options. Ann Med. 2020 Aug;52(5):162-177. doi: 10.1080/07853890.2020.1775287. Epub 2020 Jun 8. — View Citation

Tada H, Takamura M, Kawashiri MA. Lipoprotein(a) as an Old and New Causal Risk Factor of Atherosclerotic Cardiovascular Disease. J Atheroscler Thromb. 2019 Jul 1;26(7):583-591. doi: 10.5551/jat.RV17034. Epub 2019 Apr 30. Review. — View Citation

Tsimikas S. A Test in Context: Lipoprotein(a): Diagnosis, Prognosis, Controversies, and Emerging Therapies. J Am Coll Cardiol. 2017 Feb 14;69(6):692-711. doi: 10.1016/j.jacc.2016.11.042. Review. — View Citation

Zigra AM, Rallidis LS, Anastasiou G, Merkouri E, Gialeraki A. eNOS gene variants and the risk of premature myocardial infarction. Dis Markers. 2013;34(6):431-6. doi: 10.3233/DMA-130987. — View Citation

* Note: There are 17 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Ultrasound functional and morphological properties of the arterial wall and Lp (a) concentration Functional and morphological characteristics of arterial wall will correlate to Lp (a) concentrations. Baseline
Primary Concentration of Lp (a) and SNP in the LPA gene The serum concentration of Lp (a) will correlate with single nucleotide polymorphisms (SNP) in the LPA gene Baseline
Primary The effect of alirocumab or evolocumab on functional and morphological properties of arterial wall after 6 months Both drugs will improve functional and morphological properties of arterial wall in with no difference between the drugs. We expect the improvements in each drug group will be in correlation with the decrease of Lp (a) concentration. 6 months
See also
  Status Clinical Trial Phase
Completed NCT03995979 - Inflammation and Protein Restriction N/A
Completed NCT03255187 - Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT03577223 - Egg Effects on the Immunomodulatory Properties of HDL N/A
Completed NCT04383561 - Relationship Between LRG and Periodontal Disease N/A
Active, not recruiting NCT03622632 - Pilot Study to Measure Uric Acid in Traumatized Patients: Determinants and Prognostic Association
Completed NCT06216015 - Exercise Training and Kidney Transplantation N/A
Completed NCT04856748 - Nomogram to Diagnose Prostatic Inflammation (PIN) in Men With Lower Urinary Tract Symptoms
Completed NCT05529693 - Efficacy of a Probiotic Strain on Level of Markers of Inflammation in an Elderly Population N/A
Recruiting NCT05415397 - Treating Immuno-metabolic Depression With Anti-inflammatory Drugs Phase 3
Recruiting NCT05670301 - Flemish Joint Effort for Biomarker pRofiling in Inflammatory Systemic Diseases N/A
Recruiting NCT04543877 - WHNRC (Western Human Nutrition Research Center) Fiber Intervention Study Early Phase 1
Recruiting NCT05775731 - Markers of Inflammation and of the Pro-thrombotic State in Hospital Shift and Day Workers
Completed NCT03859934 - Metabolic Effects of Melatonin Treatment Phase 1
Completed NCT03429920 - Effect of Fermented Soy Based Product on Cardiometabolic Risk Factors N/A
Completed NCT06065241 - Quantifiably Determine if the Botanical Formulation, LLP-01, Has a Significant Clinical Effect on Proteomic Inflammatory Biomarkers and Epigenetic Changes in Healthy, Older Individuals. N/A
Completed NCT05864352 - The Role of Dietary Titanium Dioxide on the Human Gut Microbiome and Health
Completed NCT03318731 - Efficacy and Safety of Fenugreek Extract on Markers of Muscle Damage and Inflammation in Untrained Males N/A
Not yet recruiting NCT06134076 - Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota N/A
Not yet recruiting NCT06422494 - The Role of the Adrenergic System in Hypoglycaemia Induced Inflammatory Response in People With Type 1 Diabetes and People Without Type 1 Diabetes-RAID-II N/A