View clinical trials related to Hypoxic-ischemic Encephalopathy.
Filter by:Historically, CKRT and hemodialysis were performed in small infants and newborns with devices developed for adults with high rates of complications and mortality. We aim to retrospectively report the first multicenter French experience of CARPEDIEM® use and evaluate the efficacy, feasibility, outcomes, and technical considerations of this new device in a population of neonates and small infant. Compared to adult's device continuous renal replacement therapy with an adapted machine allowed successful blood purification without severe complications even in low birth weight neonates.
Remote Ischemic Conditioning has never been studied in neonates with HIE. However, RIC has been studied in animal models of perinatal asphyxia and has shown encouraging results. In neonatal rats with HIE, RIC is associated with reduced sensory motor deficits compared to non-RIC, and repeated cycles in three consecutive days is superior to a single treatment. In piglets, four cycles of 10 minutes of bilateral hindlimb ischemia immediately after bilateral common carotid occlusion results in reduced cell death in the periventricular white matter and internal capsule. These preclinical studies support the hypothesis that RIC may be beneficial in infants with HIE.
The NSR-GENE study is a longitudinal cohort study of approximately 300 parent-child trios from the Neonatal Seizure Registry and participating site outpatient clinics that aims to evaluate whether and how genes alter the risk of post-neonatal epilepsy among children with acute provoked neonatal seizures. The researchers aim to develop prediction rules to stratify neonates into low, medium, and high risk for post-neonatal epilepsy based on clinical, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic risk factors.
A phase 1 study investigating the tolerability and pharmacokinetics of caffeine citrate in neonates with hypoxic ischemic encephalopathy receiving therapeutic hypothermia. This study is an essential first step to develop caffeine as a kidney protective medication in this in this vulnerable group of newborns.
The purpose of this study is to evaluate the feasibility and begin to evaluate the effect of a sensorimotor intervention (SMI) provided in the first 6 months of life for infants with hypoxic-ischemic encephalopathy.
This is a feasibility study to begin investigating the possibility that early use of near vision glasses will improve vision in infants at risk of Cerebral Visual Impairment (CVI), leading to further improvement in other areas of development. This active intervention, starting at either 2 or 4 months of age (depending on randomisation), could be more effective than waiting until a problem is detected before giving glasses. As this is a feasibility study, the investigators are looking at a small sample of babies (n=75) to see whether their parents/carers are willing to take part in a 3-arm study comparing two differently timed interventions to a control group, as well as looking at different aspects of the research plan in preparation for a larger final study.
This will be a five year study that will be a prospective, randomized, controlled trial (RCT) to assess the effect of a virtual early intervention care delivery model in the provision of therapy to enhance the neurodevelopmental trajectory of infants with brain injury. In addition, the investigators will enhance understanding of the social and parental contributors to outcomes and the early health economic impact of a virtual clinic. The results of this study will help inform the design of a larger, multi-center randomized controlled trial.
Management of neonatal pain and sedation often includes opioid therapy. A growing body of evidence suggests long-term harm associated with neonatal opioid exposure. Providing optimal sedation while neonates are undergoing therapeutic hypothermia (TH) may be beneficial but also presents therapeutic challenges. While there is evidence from animal models of brain injury and clinical trials in adults to support the safety and neuroprotective properties of dexmedetomidine (DMT), there are no published large clinical trials demonstrating safety and efficacy of DMT use in neonates with hypoxic-ischemic encephalopathy (HIE) during treatment with TH. This study is innovative in proposing a Phase II, 2-arm trial providing the opportunity to evaluate the use of DMT as compared to the use of morphine for sedation and pain management for babies undergoing TH. We propose to confirm optimal DMT dosing by collecting opportunistic pharmacokinetics (PK) data and determine safety of DMT in this population. These data will inform a larger phase III efficacy trial.
In this study, the correlation of cardiac marker values (Troponin I, CK, CK-MB) measured before treatment with the long-term neurodevelopmental score of newborns diagnosed with perinatal asphyxia and treated with therapeutic hypothermia with a diagnosis of hypoxic ischemic encephalopathy (HIE) will be evaluated. Physical examination, laboratory (especially cardiac markers), aEEG findings and diffusion MRI findings of babies who have been hospitalized in the neonatal intensive care unit between 2015-2020 due to respiratory distress and who have undergone perinatal asphyxia but have undergone therapeutic hypothermia treatment will be recorded from their files in the hospital system. The neurological evaluations and neurodevelopmental scores of the babies in the follow-up in the neonatal high risk follow-up clinic after discharge will be recorded from their files.
Ammonia is a waste product of protein and amino acid catabolism and is also a potent neurotoxin. High blood ammonia levels on the brain can manifest as cytotoxic brain edema and vascular compromise leading to intellectual and developmental disabilities. The following aims are proposed: Aim 1 of this study will be to determine the chronology of biomarkers of brain injury in response to a hyperammonemic (HA) brain insult in patients with an inherited hyperammonemic disorder. Aim 2 will be to determine if S100B, NSE, and UCHL1 are altered in patients with two other inborn errors of metabolism, Maple Syrup Urine Disease (MSUD) and Glutaric Acidemia (GA1).