Clinical Trials Logo

Clinical Trial Summary

Ammonia is a waste product of protein and amino acid catabolism and is also a potent neurotoxin. High blood ammonia levels on the brain can manifest as cytotoxic brain edema and vascular compromise leading to intellectual and developmental disabilities. The following aims are proposed: Aim 1 of this study will be to determine the chronology of biomarkers of brain injury in response to a hyperammonemic (HA) brain insult in patients with an inherited hyperammonemic disorder. Aim 2 will be to determine if S100B, NSE, and UCHL1 are altered in patients with two other inborn errors of metabolism, Maple Syrup Urine Disease (MSUD) and Glutaric Acidemia (GA1).


Clinical Trial Description

Ammonia is a waste product of protein and amino acid catabolism and is also a potent neurotoxin. The onslaught of high blood ammonia levels on the brain can manifest as cytotoxic brain edema and vascular compromise leading to intellectual and developmental disabilities. In addition, clinical hyperammonemia recurs at varying intervals, which can increase the cumulative damage to the brain and the chance of irreversible coma and death during a hyperammonemia episode due to vascular compromise or brain herniation. The threshold of tolerance for elevated blood ammonia is very low and concentrations above 100 µM can cause brain dysfunction manifested as nausea, vomiting, lethargy, and abnormal behavior; higher concentrations can cause coma and even death. Failure to remove ammonia can be due to inherited defects of the urea cycle, some defects in amino acid catabolism, and degradation of fatty acids. Aim 1 - To determine the chronology of biomarkers of brain injury - S100B, NSE, and UCHL1 - in response to a hyperammonemic (HA) brain insult in patients with an inherited hyperammonemic disorder. We hypothesized that elevations of S100B, NSE, and UCHL1 will parallel the rise in blood ammonia. These biomarkers will be measured concurrently to ammonia levels throughout hospitalizations for HA until normalization of patient's blood ammonia and mental status. Aim 2 - To determine if S100B, NSE, and UCHL1 are altered in patients with two other inborn errors of metabolism in which the primary pathology is neurological injury, Maple Syrup Urine Disease (MSUD) and Glutaric Acidemia (GA1). We hypothesize that neuronal and astroglial injury in these disorders may also result in increased levels of S100B, NSE, and UCHL1. Metabolic patients will be enrolled either during a hospitalization or in outpatient clinic, but outpatient enrollment is preferred. Metabolic patients typically have multiple laboratory tests performed at their outpatient visits. We will obtain the discarded blood samples from such laboratory tests in order to measure S100B, NSE, and UCHL1 levels at baseline (normal blood ammonia), which will provide data on biomarker levels following recovery from a hyperammonemic episode. During hospitalization for metabolic decompensation or for hypoxic-ischemic encephalopathy, sequential measurements of S100B, NSE and UCHL1 levels will be obtained from discarded blood samples. We will obtain S100B, NSE, and UCHL1 levels from collected discarded blood samples at all subjects' next outpatient visit following their hospitalization, to determine if levels return to baseline. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04602325
Study type Observational
Source Children's National Research Institute
Contact Katie Rice, MPH, CCRP
Phone 202-476-6191
Email krice3@childrensnational.org
Status Recruiting
Phase
Start date July 9, 2020
Completion date May 2027

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05048550 - Babies in Glasses; a Feasibility Study. N/A
Recruiting NCT05514340 - Assess Safety and Efficacy of Sovateltide in Hypoxic-ischemic Encephalopathy Phase 2
Recruiting NCT05836610 - Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates Phase 4
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT01913340 - Neonatal Erythropoietin And Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO) Phase 1/Phase 2
Enrolling by invitation NCT02260271 - Florida Neonatal Neurologic Network
Terminated NCT01192776 - Optimizing (Longer, Deeper) Cooling for Neonatal Hypoxic-Ischemic Encephalopathy(HIE) N/A
Completed NCT06344286 - The Effects of Minimal Enteral Nutrition on Mesenteric Blood Flow and Oxygenation in Neonates With HIE N/A
Recruiting NCT05901688 - Umbilical Cord Abnormalities in the Prediction of Adverse Pregnancy Outcomes
Recruiting NCT02894866 - Hyperbaric Oxygen Therapy Improves Outcome of Hypoxic-Ischemic Encephalopathy N/A
Recruiting NCT03682042 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries Developmental Follow Up N/A
Recruiting NCT03657394 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries N/A
Withdrawn NCT03681314 - Umbilical Cord Milking in Neonates Who Are Depressed at Birth-Developmental Follow Up (MIDAB-FU) N/A
Completed NCT03485781 - Propofol-induced EEG Changes in Hypoxic Brain Injury
Recruiting NCT05568264 - Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit N/A
Completed NCT02264808 - Developmental Outcomes
Completed NCT05687708 - Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia N/A
Recruiting NCT06195345 - Individual Cerebral Hemodynamic Oxygenation Relationships (ICHOR 1)
Completed NCT01793129 - Preemie Hypothermia for Neonatal Encephalopathy N/A
Completed NCT00890409 - Safety and Efficacy of Hypothermia to Treat Neonatal Hypoxic-Ischemic Encephalopathy Phase 3