Clinical Trials Logo

Hypoxia clinical trials

View clinical trials related to Hypoxia.

Filter by:

NCT ID: NCT06248320 Recruiting - Clinical trials for Postoperative Complications

Sigh Ventilation on Postoperative Hypoxemia in Cardiac Surgery

Start date: February 25, 2024
Phase: N/A
Study type: Interventional

Postoperative pulmonary complications (PPCs) remain a frequent event after pump-on cardiac surgery and are mostly characterized by postoperative hypoxemia.These complications are significant contributors to prolonged intensive care unit admissions and an escalation in in-hospital mortality rates. The dual impact of general anesthesia with invasive mechanical ventilation results in ventilator-induced lung injury, while cardiac surgery introduces additional pulmonary insults. These include systemic inflammatory responses initiated by cardiopulmonary bypass and ischemic lung damage consequent to aortic cross-clamping. Contributing factors such as blood transfusions and postoperative pain further exacerbate the incidence of PPCs by increasing the permeability of the alveolo-capillary barrier and disrupting mucociliary functions, often culminating in pulmonary atelectasis. Protective ventilation strategies, inspired by acute respiratory distress syndrome (ARDS) management protocols, involve the utilization of low tidal volumes (6-8mL/kg predicted body weight). However, the uniform application of low tidal volumes, especially when combined with the multifactorial pulmonary insults inherent to cardiac surgery, can precipitate surfactant dysfunction and induce atelectasis. The role of pulmonary surfactant in maintaining alveolar stability is critical, necessitating continuous synthesis to sustain low surface tension and prevent alveolar collapse. The most potent stimulus for surfactant secretion is identified as the mechanical stretch of type II pneumocytes, typically induced by larger tidal volumes. This background sets the foundation for a research study aimed at assessing the safety and efficacy of incorporating sighs into perioperative protective ventilation. This approach is hypothesized to mitigate postoperative hypoxemia and reduce the incidence of PPCs in patients undergoing scheduled on-pump cardiac surgery.

NCT ID: NCT06239831 Recruiting - Hypoxemia Clinical Trials

Postoperative Respiratory and Activity Monitoring

Start date: December 22, 2022
Phase:
Study type: Observational

This study plans to learn more about specific breathing and activity recommendations for patients after surgery. Participants will be monitored after abdominal surgery to identify what activities help them breathe better and reduce complications after surgery.

NCT ID: NCT06226168 Recruiting - Hypoxia Clinical Trials

Effects of Normobaric Hypoxia Exercise Program on Bone Turnover Markers and Metabolism in Premenopausal Women

Start date: May 7, 2024
Phase: N/A
Study type: Interventional

The impact of a proprietary training program in normobaric hypoxia on changes in bone turnover markers as well as carbohydrate and lipid metabolism in premenopausal women falls within the realm of physical culture for an active and healthy society. Within this context, the implementation of a project is supported aiming to: 1. Monitor, support, and promote physical development, fitness, and physical activity in society, by assessing the effects of a proprietary training program in normobaric hypoxia on changes in bone turnover markers as well as carbohydrate and lipid metabolism in premenopausal women. 2. Develop and implement innovative methods, forms, and means of physical activation and training for individuals of various ages, by formulating general assumptions of an endurance-strength training concept under normobaric hypoxia conditions, concerning changes in bone turnover markers as well as carbohydrate and lipid metabolism in premenopausal women. 3. Prevent injuries in physical education and sports, by designing a useful training program for osteoporosis prevention as well as for managing carbohydrate and lipid metabolism disorders in premenopausal women.

NCT ID: NCT06214312 Recruiting - Hypoxemia Clinical Trials

Pulmonary Ultrasound for the Assessment of Atelectasis in Anesthetized Children Using a Laryngeal Mask Airway.

Start date: January 15, 2024
Phase:
Study type: Observational

This study will use lung ultrasounds (LUS) to evaluate the incidence and severity of intraoperative atelectasis in anesthetized children undergoing minor surgery using a laryngeal mask airway. The children will be randomly assigned to be left in spontaneous ventilation with a Positive End Expiratory Pressure (PEEP) of 5cmH2O or to be ventilated with a pressure support mode.

NCT ID: NCT06207942 Recruiting - Clinical trials for Cognitive Impairment

Stepcare Extended Follow-up Substudy

Start date: August 1, 2023
Phase: N/A
Study type: Interventional

To provide detailed information on long-term outcomes in relation to potential neuroprotection and improvements in recovery for different targets of sedation, temperature, and pressure management in post out of hospital cardiac arrest survivors at 6 and 12 months. In addition, the impact of caring for a post OHCA survivor will be explored.

NCT ID: NCT06204731 Recruiting - Hypoxia, Altitude Clinical Trials

The Impact of Physical Training Under Normobaric Hypoxia on Oxidative Stress Level, Inflammatory State, Intestinal Damage, and Mitochondrial Metabolism in Young Males

Start date: February 1, 2023
Phase: N/A
Study type: Interventional

- Cognitive assessment of the influence of a 4-week proprietary training program under normobaric hypoxia conditions on the levels of inflammatory markers, disturbances in prooxidant-antioxidant balance, degree of intestinal damage, and mitochondrial energy production rate in young sedentary males. - Applied objective: Development of practical training guidelines utilizing training in normobaric hypoxia conditions to enhance mechanisms related to oxygen transport, adaptive changes within the immune system, body's antioxidant capacity, gut permeability, substrate utilization efficiency, and mitochondrial function for coaches and athletes.

NCT ID: NCT06171841 Recruiting - Resistance Training Clinical Trials

Effects of Low-Intensity Blood Flow Restriction Training in Normoxia and Hypoxia Conditions

Start date: November 20, 2023
Phase: N/A
Study type: Interventional

One approach to significantly reducing resistance training intensity while maintaining effectiveness in muscle mass and strength development involves conducting training sessions under hypoxic conditions. This is likely due to heightened physiological responses. While sports science research indicates a substantial impact of hypoxic conditions on immediate increases in metabolic stress and augmented hormonal responses, recent findings suggest that the role of their influence on skeletal muscle adaptations post-resistance training under hypoxic conditions remains unknown. Additionally, there is a lack of reports on whether the type of hypoxia applied via blood flow restriction or chamber differentiates the increase in secretion of these catecholamines in both immediate and long-term aspects.

NCT ID: NCT06159374 Recruiting - Hypoxia, Altitude Clinical Trials

Effects of Physical Training in Altered Environmental Conditions on Exercise Performance

Start date: January 1, 2022
Phase: N/A
Study type: Interventional

The main objective of the study is to evaluate the physiological-biochemical effects of physical training under artificially altered climatic conditions (using a hypoxic thermoclimatic chamber) in particular to determine the effect of such training on exercise capacity and physiological response, including the effect of training in high-performance athletes. The study will evaluate the effects of physical training and the simultaneous application of hypoxia and heat/cold on aerobic and anaerobic capacity and the physiological response of the human body. The aim of the study is to find the most favourable environmental conditions for physical training in order to maximise physical performance.

NCT ID: NCT06158295 Recruiting - Pain Clinical Trials

Effects of Walking Apnea at Low Lung Volume on Hypoalgesia, Cardiovascular Function and Respiratory Function

Start date: December 1, 2023
Phase: Phase 3
Study type: Interventional

The aim of this randomized controlled study is to explore the hypoalgesic response of a 6 minutes of intermittent walking apneas training session at low lung volume in healthy subjects; also, as secondary objectives, to analyze the cardiovascular and respiratory response produced during the intervention.

NCT ID: NCT06158282 Recruiting - Pain Clinical Trials

Effects of Walking Apnea at High Lung Volume on Hypoalgesia, Cardiovascular Function and Respiratory Function

Start date: December 1, 2023
Phase: Phase 3
Study type: Interventional

The aim of this randomized controlled study is to explore the hypoalgesic response of a 6 minutes of intermittent walking apneas training session at high lung volume in healthy subjects; also, as secondary objectives, to analyze the cardiovascular and respiratory response produced during the intervention.