View clinical trials related to Heat Stress.
Filter by:The purpose of this research study is to better understand ways that women and men differ physiologically, cognitively, physically, and cellularly to better prescribe helpful interventions that will prevent injury and risk of conditions like exertional heat illnesses or heatstroke. The main questions this project aims to answer are: 1. What is the relative stress contributing to performance differences between women and men during intense exercise in extremely hot and humid environments in response to exertional heat stress? 2. What is the relative contribution of responses in adipose tissue, cardiovascular tissue, gut microbiota, and musculoskeletal tissue on heat tolerance in women (vs. men) to exertional heat stress? 3. What is the impact of adding an antioxidant juice consumption regime and will it assist in enhancing performance during an acute bout of exercise-heat stress before and after heat acclimation? Subjects enrolled and approved for participation will perform: 1. a heat acclimation protocol which includes the completion of 5 days of prescribed exercise-heat exposure 2. two separate acute exercise-heat exposures for the assessment of thermotolerance and the investigation of potential enhancements in thermoregulatory performance that may occur after the completion of a 5-day heat acclimation protocol 3. a subset of subjects enrolled and approved for participation who opt in to antioxidant berry supplement consumption will either consume the active or placebo product throughout their participation.
• This study investigates and compares the within and in-between variances of the body responses to different heat stressors in a controlled lab-setting. The participants will be exposed to different heat sources while a variety of physiological heat strain reactions such as heartrate, sweat rate, and core body temperature are recorded using on- and in-body devices. For the participant monitoring during the study, medical grade devices such as a certified ECG and a swallowable sensor-pill to continuously monitor the core body temperature will be applied. A one-for-all wearable device is additionally applied for physiological validation. Further, sweat will be collected to assess (i) the local sweat rate and (ii) the appearance of different heat stress associated molecular markers in this non-invasively collectable biofluid. As a secondary aim, a model will be developed that will enable to predict the different heat stress sources out of the heat strain measurements.
The incidence and severity of hot weather and extreme heat events (heat waves) is increasing. As such, there is an urgent need to develop heat-alleviation strategies that can provide targeted protection for older adults who are at an elevated risk for heat-induced illnesses or death due to impaired body temperature and cardiovascular regulation. While air-conditioning provides the most effective protection from extreme heat, it is inaccessible for many individuals and cannot be used during power outages (e.g., heat-related rolling blackouts). Immersion of the lower limbs in cold water and/or the application of cold towels to the neck have been recommended as simple and sustainable alternatives to air-conditioning. However, empirical data to support the efficacy of these interventions for mitigating physiological strain and discomfort in older adults is lacking. To address this knowledge gap, this randomized crossover trial will evaluate the effect of lower limb immersion with and without application of cold towels to the neck on body core temperature, cardiovascular strain and autonomic function, dehydration, and thermal comfort in adults aged 65-85 years exposed to simulated heat wave conditions (38°C, 35% relative humidity) for 6 hours.
Repeated exposure to heat in a laboratory setting (acclimation) elicits a range of adaptations, which reduce heat illness risk and increase work capacity in the heat. Traditional approaches to heat acclimation require daily heat exposures of 1 to 2 hours over ~7 to 10 consecutive days. Heat acclimation approaches which reduce the number of days to achieve acclimation may have utility. The primary purpose of the proposed research is to determine whether it is possible to achieve a similar degree of heat acclimation to that seen with a traditional longer-term heat acclimation approach by increasing the frequency of heat exposure, utilising multiple daily heat exposures over a smaller number of days. Secondary aims of the research are to examine whether heat acclimation provides cross-adaptation to a hypoxic stressor and whether heat acclimation improves aerobic fitness.
The purpose of this study is to measure fatigue and indicators of acute kidney injury during consecutive days of work in a hot environment.
With the increasing incidence and severity of extreme heat events accompanying climate change, there is an urgent need for sustainable cooling strategies to protect heat-vulnerable older adults, who are at increased risk of adverse health events during heat stress. Health agencies including the World Health Organization, the United States Centers for Disease Control and Prevention, and Health Canada currently recommend visiting a cooling centre or other air-conditioned location for 1-3 hours per day during extreme heat events to mitigate hyperthermia and strain on the cardiovascular system and therefore the risk adverse health events. However, our recent trial shows that while brief air-conditioning exposure is effective for reducing body temperature and cardiovascular burden in healthy older adults, the physiological impacts of cooling abate quickly following return to the heat. The purpose of this project is therefore to assess whether shorter but more frequent air-conditioning exposure provides more effective cooling than current recommendations (a single 1-3-hour cooling bout) in older adults with or without common chronic health conditions associated with increased vulnerability to extreme heat. This will be accomplished by evaluating physiological strain in older adults with and without diabetes and/or hypertension exposed for 8 hours to conditions reflective of extreme heat events in temperate, continental climates (35°C, 60% relative humidity). Participants will complete 3 separate simulated heat event exposures: i) a control trial (no cooling throughout the 8-hour heat event); ii) a recommended cooling trial (3 hours of heat exposure followed by 2 hours cooling); and iii) a hybrid cooling trial (2 hours of heat exposure followed by 1 hour cooling, another 2 hours heat exposure followed by 1 hour cooling, and a final 2-hour heat exposure).
The primary purpose of the proposed study is to evaluate the effects of a topical sodium bicarbonate lotion (PR Lotion, AMP Human, Park City, UT) on measures of hydration status and fluid balance in humans when exposed to the heat while resting and during light/moderate aerobic exercise. A secondary purpose is to examine these same effects with two differing dosage patterns of the lotion. A tertiary purpose is to investigate the effect of an amino acid rehydration beverage in comparison to a placebo on measurements of hydration, subjective assessments of stress, and vestibular as well as musculoskeletal measures of fatigue for up to 24-hours after the completion of both passive and exertional heat stress within a dehydrated state.
Severe heat strain arising from intense physical work under climate conditions that does not allow sufficient heat dissipation may lead to heat stroke. This severe conditions is hypothesized to be secondary to increased gut permeability and leakage of bacterial toxins across the gut membrane, stimulating a systematic inflammatory response and associated organ injury. Repeated such sub-clinical increases in gut permeability has been suggested to contribute to the high burden of chronic kidney disease among heat-stressed workers. Many marathon runners experience a transient increase in kidney injury biomarkers while running. Probiotics have been studied as a way to decrease gut permeability and reduce systemic inflammation in many settings, including in athletes . However, no study has measured renal outcomes among workers or athletes performing strenuous activity. This is of interest as it could test the hypothesis that gut-induced inflammation is a driver of kidney injury during heat stress, and could point to a possible intervention to add on to efforts to relieve heat strain. In the present study, recreational or professional runners will be randomized to take a probiotic supplement or placebo during a 4 week period preceding a strenuous physical exercise (minimum 21 km run). Urine samples will be taken before and after the run, and analyzed for markers of renal injury and inflammation.
This is primarily an experimental study investigating methods of temperature measurement / heat strain detection. In the calibration study, there are different skin temperature sensor types, and in the prediction study there are different methods for determining heat strain, including conventional methods (rectal, gastro-intestinal), the development of a prediction model, and an index based on heart rate variability.
The study aims to investigate the effects of including regular heat therapy when included to exercise. Specifically, participants in the sauna intervention group will undergo 15 minutes of sauna exposure immediately after a 50-minute session of exercise, 3 times a week, while participants in the exercise intervention group will follow only the same exercise protocol. The 50-minute exercise session consists of 20 minutes of moderate intensity strength exercise, followed by 30 minutes of moderate-vigorous aerobic exercise on stationary bikes. This exercise intervention protocol was selected in order to meet and adhere to the recommended physical activity guidelines.