Clinical Trials Logo

Clinical Trial Summary

The objective of this study is to use high-frequency brain signals (HFBS) to localize functional brain areas and to characterize HFBS epilepsy, migraine and other brain disorders. We hope to build the world's first high-frequency MEG/MEG/ECoG/SEEG database for the developing brain. HFBS include high-gamma activation/oscillations, high-frequency oscillations (HFOs), ripples, fast ripples, and very high frequency oscillations (VHFOs) in the brain. To reach the goals, we have developed several new MEG/EEG methods: (1) accumulated spectrogram; (2) accumulated source imaging; (3)frequency encoded source imaging; (4) multi-frequency analysis; (5)artificial intelligence detection of HFOs; (6) Neural network analysis (Graph Theory); and (7) others (e.g. ICA, virtual sensors).


Clinical Trial Description

I. PURPOSE OF STUDY The purpose of this study is to go beyond the conventional analyses of brain signals in a narrow frequency band (typically 1-30 Hz) by measuring brain signals from infraslow to very fast (0.01 - 2800 Hz). Specifically, we propose to study physiological HFOs in sensorimotor, auditory, visual and language evoked magnetic fields and to investigate pathological HFOs in epilepsy, migraine and other disorders. This is clinical very important for many reasons. For example, There are 400,000 to 600,000 patients with refractory epilepsy in the United States. Since those patients' seizures cannot be controlled by any drugs, epilepsy surgery is one potential cure. Accurate identification of ictogenic zones, the brain areas cause seizures, is essential to ensure a favorable surgical outcome. Unfortunately, the existing method, electrocorticography (ECoG), needs to place electrodes upon the brain surface to capture spikes (typically, 14-70 Hz), which is very risky and costly. The present study is to use magnetoencephalography (MEG) and electroencephalography (EEG) to identification of ictogenic zones noninvasively. To reach the goal, we proposed to detect high frequency (70-2,500 Hz) and low frequency (< 14 Hz) brain signals with advanced signal processing methods. Our central hypothesis is that high frequency brain signals will lead to significantly improved rates of seizure freedom as compared with spikes. This hypothesis is based on recent reports that high frequency brain signals are localized to ictogenic zones. Building on our unique resources and skills, we plan to address four aims. First, we will quantify the spatial concordance between MEG and ECoG signals in both low and high frequency ranges. We hypothesize that Ictogenic zones determined by invasive ECoG can be non-invasively detected and localized by high frequency MEG signals. Second, we will quantify the occurrence concordance between EEG and ECoG signals in both low and high frequency ranges. We hypothesize that epileptic high frequency signals from the ictogenic zones determined by invasive ECoG can also been non-invasively detected by EEG, although the localization of EEG may be significantly inferior to that of MEG. Third, we will determine whether epilepsy surgery based on multi-frequency signals (low frequency brain signals, spikes, and high frequency brain signals), instead of spikes alone, leads to a better seizure outcome. We hypothesize that epilepsy surgery guided by high frequency brain signals detected with MEG/EEG will significantly improve surgical outcomes. Fourth, we will determine whether multi-frequency analyses provide more information than single frequency analysis for estimating epileptogenic zones for pre-surgical ECoG electrode implantation. We hypothesize that covering all brain areas generating low to high frequency epileptic activity is the prerequisite to localize multiple ictogenic zones for favorable post-surgical outcomes. To yield definitive results, we propose a multi-center study to determine if high frequency brain signals are new biomarkers for significantly improve epilepsy surgery outcomes. According to our pilot data that localization of epileptogenic zones with MEG high frequency signals can increase about 30-40% post-operative seizure freedom, the proposed study should result in millions of intractable epilepsy patients being seizure free. This study also lays a foundation for using low and high frequency brain signals as new biomarkers for diagnosis and treatment of many other disorders (e.g. migraine, autism). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00600717
Study type Observational
Source Children's Hospital Medical Center, Cincinnati
Contact
Status Enrolling by invitation
Phase
Start date November 1, 2000
Completion date August 1, 2026

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1