Coronary Artery Disease Clinical Trial
— TARGETOfficial title:
The Effect of On-site CT-derived Fractional Flow Reserve on the Management Making for the Patients With Stable Chest Pain (TARGET Trial)
Verified date | December 2023 |
Source | Chinese PLA General Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The primary of this registry is to evaluate whether the availability of CTA/CT-FFR procedure could effectively optimize the flow of clinical practice of stable chest pain versus conventional clinical pathway in decision making, avoid the overuse of invasive procedure, finally improve clinical prognosis and reduce total medical expenditure. This registry is randomized, open labeled, prospective designed and will be performed in 6 Chinese hospitals. Approximately 1200 subjects will be enrolled and subsequently assigned to either routine clinically-indicated diagnostic care group (CID arm) or CTA/CT-FFR care group (CTA/CT-FFR arm) via computer-generated random numbers (1:1 ratio)
Status | Completed |
Enrollment | 1216 |
Est. completion date | October 31, 2022 |
Est. primary completion date | October 30, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 40 Years to 75 Years |
Eligibility | Inclusion Criteria: - New-onset chest pain suspicious for CAD - Coronary CTA result showed that the diameter stenosis is between 30 and 90% in at least one major coronary artery (coronary artery diameter = 2.5 mm) - Intermediate-to-high pretest probability of CAD based on CAD Consortium Score - No prior evaluation for this episode of symptoms - Agree to participate in this clinical study and sign written informed consent Exclusion Criteria: - Diagnosed or suspected acute coronary syndrome requiring hospitalization or emergent testing - Hemodynamically or clinically unstable condition systolic blood pressure < 90 mmHg or serious atrial or ventricular arrhythmias - Known CAD with prior myocardial infarction, percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG), or any angiographic evidence of = 50% stenosis in any major coronary artery - Patients with left main branch stenosis = 50% or major coronary artery stenosis > 90% - Known severe congenital, valvular (moderate and above), or cardiomyopathy process (hypertrophic cardiomyopathy or reduced systolic left ventricular function = 40%) which could explain cardiac symptoms - Unable to provide written informed consent or participate in long-term follow-up. |
Country | Name | City | State |
---|---|---|---|
China | Chinese PLA General Hospital | Beijing | Beijing |
Lead Sponsor | Collaborator |
---|---|
Chinese PLA General Hospital | Beijing Anzhen Hospital, First Affiliated Hospital of Xinjiang Medical University, Qilu Hospital of Shandong University, Second Affiliated Hospital, School of Medicine, Zhejiang University, Tongji Hospital |
China,
Colleran R, Douglas PS, Hadamitzky M, Gutberlet M, Lehmkuhl L, Foldyna B, Woinke M, Hink U, Nadjiri J, Wilk A, Wang F, Pontone G, Hlatky MA, Rogers C, Byrne RA. An FFRCT diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one-year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFRCT: Outcome and Resource Impacts) study. Open Heart. 2017 Mar 22;4(1):e000526. doi: 10.1136/openhrt-2016-000526. eCollection 2017. — View Citation
Collet C, Onuma Y, Andreini D, Sonck J, Pompilio G, Mushtaq S, La Meir M, Miyazaki Y, de Mey J, Gaemperli O, Ouda A, Maureira JP, Mandry D, Camenzind E, Macron L, Doenst T, Teichgraber U, Sigusch H, Asano T, Katagiri Y, Morel MA, Lindeboom W, Pontone G, Luscher TF, Bartorelli AL, Serruys PW. Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. Eur Heart J. 2018 Nov 1;39(41):3689-3698. doi: 10.1093/eurheartj/ehy581. — View Citation
Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA; PLATFORM Investigators. 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: The PLATFORM Study. J Am Coll Cardiol. 2016 Aug 2;68(5):435-445. doi: 10.1016/j.jacc.2016.05.057. — View Citation
Fairbairn TA, Nieman K, Akasaka T, Norgaard BL, Berman DS, Raff G, Hurwitz-Koweek LM, Pontone G, Kawasaki T, Sand NP, Jensen JM, Amano T, Poon M, Ovrehus K, Sonck J, Rabbat M, Mullen S, De Bruyne B, Rogers C, Matsuo H, Bax JJ, Leipsic J, Patel MR. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018 Nov 1;39(41):3701-3711. doi: 10.1093/eurheartj/ehy530. — View Citation
Jensen JM, Botker HE, Mathiassen ON, Grove EL, Ovrehus KA, Pedersen KB, Terkelsen CJ, Christiansen EH, Maeng M, Leipsic J, Kaltoft A, Jakobsen L, Sorensen JT, Thim T, Kristensen SD, Krusell LR, Norgaard BL. Computed tomography derived fractional flow reserve testing in stable patients with typical angina pectoris: influence on downstream rate of invasive coronary angiography. Eur Heart J Cardiovasc Imaging. 2018 Apr 1;19(4):405-414. doi: 10.1093/ehjci/jex068. — View Citation
Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011 Nov 1;58(19):1989-97. doi: 10.1016/j.jacc.2011.06.066. — View Citation
Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012 Sep 26;308(12):1237-45. doi: 10.1001/2012.jama.11274. — View Citation
Norgaard BL, Hjort J, Gaur S, Hansson N, Botker HE, Leipsic J, Mathiassen ON, Grove EL, Pedersen K, Christiansen EH, Kaltoft A, Gormsen LC, Maeng M, Terkelsen CJ, Kristensen SD, Krusell LR, Jensen JM. Clinical Use of Coronary CTA-Derived FFR for Decision-Making in Stable CAD. JACC Cardiovasc Imaging. 2017 May;10(5):541-550. doi: 10.1016/j.jcmg.2015.11.025. Epub 2016 Apr 13. — View Citation
Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S; NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014 Apr 1;63(12):1145-1155. doi: 10.1016/j.jacc.2013.11.043. Epub 2014 Jan 30. — View Citation
Norgaard BL, Terkelsen CJ, Mathiassen ON, Grove EL, Botker HE, Parner E, Leipsic J, Steffensen FH, Riis AH, Pedersen K, Christiansen EH, Maeng M, Krusell LR, Kristensen SD, Eftekhari A, Jakobsen L, Jensen JM. Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2018 Oct 30;72(18):2123-2134. doi: 10.1016/j.jacc.2018.07.043. Epub 2018 Aug 25. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Number of Participants With ICA Without Obstructive CAD or Intervention | Number of those patients with planned ICA in whom no significant obstructive CAD (no stenosis=70% by core lab quantitative analysis or invasive FFR=0.8) is found or interventions (including stent implantation, balloon dilation and bypass graft) are performed during ICA within 90 days. | 90 days | |
Secondary | Number of Participant With Major Adverse Cardiovascular Event | Major adverse cardiovascular event include death, myocardial infarction (MI), major complications from cardiovascular (CV) procedures or testing, and unstable angina hospitalization | 12 months | |
Secondary | Medical Expenditure | Overall cardiac medical expenditure by intention to treat at both 90 days and 12 months cumulatively | 12 months | |
Secondary | Patient Reporting Outcomes | Patient reporting outcomes as measured by Seattle Angina Questionnaire-7(SAQ-7) Scale, use SAQ-7-item instrument that measures patient reported symptoms, function and quality of life for subjects with CAD within 12 months. The SAQ-7 score is calculated as the average of the physical limitation score, quality of life score and angina frequency score. The physical limitation score, quality of life score and angina frequency score range from 0 to 100 each. Therefore, the SAQ-7 score also ranges from 0 to 100.The higher the SAQ-7 socre, physical limitation score, quality of life score and angina frequency score are, the better the quality of life for patients with angina. | Study entry, 3 months, 6 months and12 months | |
Secondary | Cumulative Radiation Exposure | Cumulative radiation exposure for any examination within 90 days and 12 months. Due to not enough data acquired, the investigators decided not to report at this time | 90 days, 12 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06030596 -
SPECT Myocardial Blood Flow Quantification for Diagnosis of Ischemic Heart Disease Determined by Fraction Flow Reserve
|
||
Completed |
NCT04080700 -
Korean Prospective Registry for Evaluating the Safety and Efficacy of Distal Radial Approach (KODRA)
|
||
Recruiting |
NCT03810599 -
Patient-reported Outcomes in the Bergen Early Cardiac Rehabilitation Study
|
N/A | |
Recruiting |
NCT06002932 -
Comparison of PROVISIONal 1-stent Strategy With DEB Versus Planned 2-stent Strategy in Coronary Bifurcation Lesions.
|
N/A | |
Not yet recruiting |
NCT06032572 -
Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE)
|
N/A | |
Recruiting |
NCT05308719 -
Nasal Oxygen Therapy After Cardiac Surgery
|
N/A | |
Recruiting |
NCT04242134 -
Drug-coating Balloon Angioplasties for True Coronary Bifurcation Lesions
|
N/A | |
Completed |
NCT04556994 -
Phase 1 Cardiac Rehabilitation With and Without Lower Limb Paddling Effects in Post CABG Patients.
|
N/A | |
Recruiting |
NCT05846893 -
Drug-Coated Balloon vs. Drug-Eluting Stent for Clinical Outcomes in Patients With Large Coronary Artery Disease
|
N/A | |
Recruiting |
NCT06027788 -
CTSN Embolic Protection Trial
|
N/A | |
Recruiting |
NCT05023629 -
STunning After Balloon Occlusion
|
N/A | |
Completed |
NCT04941560 -
Assessing the Association Between Multi-dimension Facial Characteristics and Coronary Artery Diseases
|
||
Completed |
NCT04006288 -
Switching From DAPT to Dual Pathway Inhibition With Low-dose Rivaroxaban in Adjunct to Aspirin in Patients With Coronary Artery Disease
|
Phase 4 | |
Completed |
NCT01860274 -
Meshed Vein Graft Patency Trial - VEST
|
N/A | |
Recruiting |
NCT06174090 -
The Effect of Video Education on Pain, Anxiety and Knowledge Levels of Coronary Bypass Graft Surgery Patients
|
N/A | |
Completed |
NCT03968809 -
Role of Cardioflux in Predicting Coronary Artery Disease (CAD) Outcomes
|
||
Terminated |
NCT03959072 -
Cardiac Cath Lab Staff Radiation Exposure
|
||
Recruiting |
NCT05065073 -
Iso-Osmolar vs. Low-Osmolar Contrast Agents for Optical Coherence Tomography
|
Phase 4 | |
Recruiting |
NCT04566497 -
Assessment of Adverse Outcome in Asymptomatic Patients With Prior Coronary Revascularization Who Have a Systematic Stress Testing Strategy Or a Non-testing Strategy During Long-term Follow-up.
|
N/A | |
Completed |
NCT05096442 -
Compare the Safety and Efficacy of Genoss® DCB and SeQuent® Please NEO in Korean Patients With Coronary De Novo Lesions
|
N/A |