Clinical Trials Logo

Brain Metastases, Adult clinical trials

View clinical trials related to Brain Metastases, Adult.

Filter by:

NCT ID: NCT05124236 Recruiting - Clinical trials for Brain Metastases, Adult

Trial of Preoperative Radiosurgery Versus Postoperative Stereotactic Radiotherapy for Resectable Brain Metastases

PREOP-2
Start date: July 29, 2022
Phase: N/A
Study type: Interventional

The research question is whether a single fraction of preoperative radiosurgery can reduce the incidence of leptomeningeal disease 12 months following resection of a brain metastasis (BM) as compared with 5 fractions of postoperative stereotactic radiotherapy.

NCT ID: NCT05050929 Recruiting - Clinical trials for Brain Metastases, Adult

RAPid SimPLE Targeted Radiation Treatment for Brain Metastases

RAPPLE
Start date: July 1, 2022
Phase: Phase 2
Study type: Interventional

The aim of the study is to show that rapid, simple targeted radiotherapy to brain metastases with 8 Gy / 1 is non-inferior to 20 Gy / 5 in terms of overall survival for patients with poor prognosis.

NCT ID: NCT05012254 Recruiting - Lung Cancer Clinical Trials

Nivolumab and Ipilimumab Plus Chemotherapy for Patients With Stage IV Lung Cancer With Brain Metastases

NIVIPI-Brain
Start date: November 18, 2021
Phase: Phase 2
Study type: Interventional

This is an open-label, non-randomised, phase II, multicenter clinical trial. 71 stage IV or recurrent, non-small cell lung cancer patients with synchronous brain metastases will be enrolled in this trial to evaluate the efficacy of Nivolumab plus Ipilimumab plus two cycles of platinum-based chemotherapy as first line treatment.

NCT ID: NCT04805255 Recruiting - Clinical trials for Brain Metastases, Adult

A Neurocognitive Study in Patients With Brain Oligometastases Receiving Hypofractionated SRT

HF-SRT
Start date: February 25, 2021
Phase:
Study type: Observational

Background: For newly-diagnosed patients with brain metastasis, conventional whole-brain radiation therapy (WBRT) might still remain a common palliative management even for those with brain oligometastases. However, WBRT-related late consequences, particularly a decline in neurocognitive functions (NCFs), are a major concern. Actually, WBRT-related neurocognitive dysfunction is usually characterized as deterioration involving learning and memory, in which the extremely radiosensitive hippocampus indeed plays a critical role. In order to postpone or mitigate the effect of conventional WBRT-induced neurocognitive impairments, there have been some strategies and options in clinical practice. Among them, the technique of highly precise and accurate stereotactic radiosurgery or stereotactic radiotherapy (i.e., hypofractionated stereotactic radiotherapy, HS-SRT) might have been widely administered in irradiating purely focal metastatic foci in cancer patients with a limited number of brain metastases. Methods: Newly-diagnosed cancer patients harboring 1-3 brain metastatic lesions are eligible if they are still in a fair/good performance status. All recruited patients should receive baseline brain MRI examination and pre-radiotherapy neurocognitive assessment. Sticking to the principles of stereotactic radiosurgery/radiotherapy (SRS/SRT), treatment planning will be designed via the technique of volumetric-modulated arc therapy (VMAT) to achieve both satisfactory in-field local control (but assuring of hippocampal avoidance) and a tolerably low incidence of radiation necrosis, a course of hypofractionated stereotactic radiotherapy (HF-SRT) is delivered within 2 weeks with a cumulative dose of 3000 - 3500 cGy in 5 fractions. Accordingly, a battery of neuropsychological measures, which includes 7 standardized neuropsychological tests (e.g., executive functions, verbal and non-verbal memory, working memory, and psychomotor speed), is used to evaluate neurocognitive functions for our registered patients. The primary outcome measure is cognitive-deterioration-free survival, which is defined mainly as the time from enrollment to a NCF decline of exceeding than 1 SD away from the baseline involving at least one of the assessed NCF tests. Additionally, patients who expire before 6 months or are alive but fail to undergo all the neurocognitive testing administered would also be defined as suffering from cognitive deterioration. There are quite a few secondary endpoints of interest, including the patterns of (CNS) failure, actual local control rates, time to (CNS) progression, and cumulative incidence of radiation necrosis. Expected results: This prospective neurocognitive study aims to examine thoroughly the impact of the technique of highly focal brain irradiation administered with a course of hypofractionated SRT delivered to brain metastatic lesions merely (but sparing hippocampal structures), on neurocognitive performance, time to (CNS) progression, and patterns of (CNS) failure, in patients with brain oligometastases and a fair/good performance status. It is anticipated that (in-field) local control would be durable and that neurocognitive outcomes would also be maintained favorably. Moreover, we also expect that the patterns of (CNS) failure and the individual time to progression will be clearly demonstrated in this prospective longitudinal neurocognitive study.

NCT ID: NCT04785521 Recruiting - Clinical trials for Brain Metastases, Adult

Glutamate Excitotoxicity in Brain Metastases From Lung, Breast and Melanoma Treated With Stereotactic Radiosurgery

Start date: July 1, 2020
Phase:
Study type: Observational

Brain metastases (BM) represents a devastating clinical reality, carrying an estimated survival time of less than one year. Number of reasons, including complicated tumor biology and difficulties in modeling metastatic cancer in brain microenvironment, do hinder research on this topic. BM are indeed the most frequent neoplasm in the central nervous system (CNS) and is estimated that up to 14% of all newly diagnosed cancers will metastasize to the brain. A number of reasons, including complicated tumor biology and difficulties in modeling metastatic cancer in brain microenvironment, do hinder research on this topic. Present knowledge regarding alterations in Glutamate (Glu) homeostasis and BM is poor. This study aims at investigating Glu balance in BM patients and providing supporting evidence to the identification of new putative biomarkers to be used as potential therapeutic targets.

NCT ID: NCT04711824 Recruiting - Breast Cancer Clinical Trials

Study of Stereotactic Radiosurgery With Olaparib Followed by Durvalumab and Physician's Choice Systemic Therapy in Subjects With Breast Cancer Brain Metastases

SOLARA
Start date: March 9, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This study is a Phase I/II study evaluating the safety and effectiveness of focused radiation therapy (radiosurgery) together with olaparib, followed by immunotherapy, for patients with brain metastases from triple negative or BRCA-mutated breast cancers. This study will have a Phase I portion in which subjects will be enrolled based on 3+3 dose escalation rules. Three dose levels of olaparib will be studied. Cycle 1 of study treatment will consist of Olaparib given twice daily concurrently with stereotactic radiosurgery (SRS). Olaparib will start one week prior to SRS and continue during and following SRS (1-5 fractions) for up to 28 days total. The number of doses of Olaparib will be dependent on how long it takes a subject to recover from SRS (ideally the subject will be off steroids, if they are required, at the start of Cycle 2, with exceptions outlined later in this section). Once the subject has recovered from SRS (based on investigator discretion) that will be considered the DLT period. Cycle 2 will be initiated with physician's choice systemic therapy and durvalumab. Cycle 2+ will equal 21 days. During Cycles 2 and 3, physician's choice systemic monotherapy will be given along with durvalumab per protocol. Each cycle will last 21 days. Imaging to evaluate intracranial and extracranial disease will be performed after Cycle 3, and subjects with response will continue with the systemic therapy and durvalumab until progression (intracranial or extracranial), unacceptable toxicity or death.

NCT ID: NCT04689321 Recruiting - Glioma Clinical Trials

Revision of the EORTC QLQ-BN20 Questionnaire

QLQBN20
Start date: December 19, 2018
Phase:
Study type: Observational

Despite the fact that use of the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire - Brain Neoplasm (QLQ-BN20) has tremendously contributed to insight into the health-related quality of life (HRQoL) of brain tumor patients, certain items of the questionnaire have raised issues, and new treatments have been introduced, with different toxicity profiles not covered by the current measure. These observations have led to the recognition that a revision of the QLQ-BN20 is warranted. The aim of this project is to update the current EORTC QLQ-BN20 questionnaire.

NCT ID: NCT04689048 Recruiting - Brain Metastases Clinical Trials

Assess Use of 18F-Fluciclovine for Patients With Large Brain Metastases Treated With Staged Stereotactic Radiosurgery

Start date: April 4, 2022
Phase: Phase 1
Study type: Interventional

The spread of cancer to the brain is referred to as brain metastases. Brain metastases are a common complication of cancer. This study is being done to determine whether the use of a new imaging agent, 18F-fluciclovine, is able to detect which patients are responding to radiation therapy. In addition, this study will look at the changes of the treated brain metastases using this imaging agent over time.

NCT ID: NCT04567251 Recruiting - Lung Cancer Clinical Trials

Survivorship Study of Cancer Patients Who Received Cranial Radiation Therapy

SPiRiT
Start date: December 28, 2021
Phase:
Study type: Observational

This study represents a survivorship protocol that focuses on cognition and health-related quality of life (HRQoL) in cancer patients that have received prior brain irradiation. The primary purpose of this study is to assess the feasibility of using a digital symptom tracking application focused on HRQoL and cognition in cancer survivors who received brain irradiation.

NCT ID: NCT04461418 Recruiting - Clinical trials for Brain Metastases, Adult

Accelerated Checkpoint Therapy for Any Steroid Dependent Patient With Brain Metastases

ACT-FAST
Start date: March 30, 2021
Phase: Phase 2
Study type: Interventional

Immunotherapy treatments are intended to boost a person's immune system to fight their cancer. Treatment with immunotherapy has been shown to be effective in a wide range of cancers, including melanoma skin cancer, lung cancer and kidney cancer, among others. Steroids are anti-inflammatory medications which may suppress the immune system. For this reason, persons requiring treatment with steroids have not previously been allowed to participate in immunotherapy clinical trials. Therefore, we do not know whether or not immunotherapy treatments are effective in patients who are also receiving treatment with steroids. When cancer has spread to the brain swelling may occur around the tumors, and headache, nausea, seizures or stroke-like symptoms may occur. In this instance, steroids are important to reduce swelling within the brain, thus alleviating these symptoms. Because patients requiring treatment with steroids have not previously been allowed to participate in immunotherapy clinical trials, we do not know whether treatment with immunotherapy is effective when steroid treatments are also used. This study will investigate this question, and also attempt to determine whether treatment with one steroid versus another results in a better response to immunotherapy.