View clinical trials related to Brain Metastases, Adult.
Filter by:Recent research indicates that variability in cognitive function for brain tumor survivors may be explained by differences in cognitive reserve (CR) and use of compensatory strategies.However, it is unknown when cognitive function declines or survivors tap into compensation. This longitudinal mixed methods study proposes to explore differences in cognitive function and change over time in newly diagnosed adults with brain cancer prior to, immediately after (within 2 weeks), and 2-3 months after radiation therapy treatment has been completed. Specific aims are to: Aim1: Examine the relationship between objective and subjective cognitive function in subjects newly diagnosed with brain cancer prior to and after XRT. Aim 2: Explore the interrelationship between cognitive function and compensation (neural and behavioral) by high/low CR prior to and after XRT. Aim 3: Describe the trajectory of objective and subjective cognitive function over time by CR, cancer type, and associated treatment-related factors.
This study investigates the intrafractional accuracy of a frameless thermoplastic mask used for head immobilization during stereotactic radiotherapy. Non-invasive masks cannot completely prohibit head movements. Previous studies attempted to estimate the magnitude of intrafractional inaccuracy by means of pre- and postfractional measurements only. However, this might not be sufficient to accurately map also intrafractional head movements. Intrafractional deviation of mask-fixed head positions is measured in five patients during a total of 94 fractions by means of close-meshed repeated ExacTrac measurements conducted during the entire treatment session. From the obtained data the investigators evaluate the need to adjust safety margins around the gross tumor volume (GTV) whenever the investigated thermoplastic mask is used instead of invasive ring fixation.
In advanced cancer disease brain metastases are common, difficult to treat, and are associated with a poor prognosis. As new local and systemic therapies are eventually resulting in improved survival and quality of life for patients with brain metastases, negative neurocognitive effects of radiation therapy are becoming increasingly important as well as good loco-regional disease control of brain metastases. Concerning treatment, brain metastases remain a major clinical problem and a multidisciplinary approach to management should be adopted. Neurosurgical resection with postoperative whole brain radiotherapy (WBRT) is one major treatment option in solitary or symptomatic brain metastases. Furthermore, WBRT is recommended for multiple brain metastases. For a limited number of brain metastases stereotactic radiosurgery (SRS) has been established as a highly effective treatment alternative. Recently, a new treatment approach combing neurosurgery with postoperative stereotactic radiotherapy (SRT) of the resection cavity is emerging. Based on available evidence, postoperative SRT of the resection cavity improves local control following surgery, reduces the number of patients who require whole brain radiotherapy, and is well tolerated (1). This protocol is aimed at primarily evaluating the safety and toxicity profile of SRT to the resection cavity following neurosurgical resection combined with SRT of potentially further unresected brain metastases, compared to postoperative whole-brain radiotherapy (WBRT). Secondary, the local effect of SRT in patients with brain metastases will be assessed by measuring time to local recurrence (LR), local and loco-regional progression-free survival (PFS). Additional systemic treatment will be carried out according to the standards of the National Center for Tumor Therapy (NCT).
The purpose of this study is to determine the effectiveness and efficiency of Single Isocenter Multi-target Stereotactic Radiosurgery (SIMT SRS) in patients with four or more brain metastases