View clinical trials related to Brain Injuries.
Filter by:The goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: 1. Does personalized TMS improve brain connectivity after concussion? 2. Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? 3. Do the improvements last up to 2 months post-treatment? 4. Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): 1. One for the baseline symptom assessments and magnetic resonance imaging (MRI) 2. Ten for TMS administration 3. Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.
The aging population and its accompanying burden from non-communicable chronic diseases predicts an increasing impact imposed by frailty on healthcare systems. This is due to a lack of normative data for older adults and reliable risk stratification methods to develop effective approaches to the prevention of frailty. In this study, the investigators plan to form a common dataset for phenotype identification, risk stratification of frailty and its targeted treatment plans in the at-risk and mildly frail population.
Background: Respiratory health problems are one of the main causes of morbidity and mortality in adult people with acquired brain injury (ABI). The influence of respiratory muscle training has not yet been studied in this population group. The objective of the study was to evaluate and compare the efficacy of two protocols with respiratory muscle training, inspiratory muscle training vs expiratory muscle training, to improve respiratory strength and pulmonary function in adults with CP. Methods: The study is a controlled, randomised, double-blind trial and with allocation concealment. 26 ABI patients will be recruited and randomly distributed in the inspiratory muscle training group (IMT) and the expiratory muscle training group (EMT). Over an 8-week period an IMT or EMT protocol was followed 5 days/week, 5 series of 1-minute with 1-minute rest between them. IMT trained with a load of 50% of the maximum inspiratory pressure (MIP) and EMT with 50% of the maximum expiratory pressure (MEP). Respiratory strength and pulmonary function were evaluated.
The purpose of the present study is to study the effect of baricitinib administration on outcome of participants with moderate and severe traumatic intracerebral hemorrhage/contusions. A multi-center randomized control trial will be conducted. Participants with a radiological diagnosis of traumatic intracerebral hemorrhage/contusions and an initial GCS score of 5-12 will be screened and enrolled in the first 24 hours after traumatic brain injury.
The goal of this clinical trial is to learn about treatment with fresh frozen plasma (FFP) in individuals with moderate to severe traumatic brain injury. The two main question[s]it aims to answer are: - Is the FFP treatment safe? - Does the FFP treatment impact the 24-hour, 3-month and 6-month outcomes, intensive-care free days, mortality, and hospital brain and physical function at discharge. Patients with moderate to severe TBI will randomly receive either: - Standard of care treatment - Standard of care treatment + 2 units of FFP. Researchers will compare participants receiving standard of care treatment to those receiving experimental fresh frozen plasma (FFP) treatment to see if the FFP is safe and beneficial to participant outcomes.
Despite advances in post-resuscitation care of patients with cardiac arrest (CA), the majority of survivors who are treated after restoration of spontaneous circulation (ROSC) will have sequelae of hypoxic-ischemic brain injury ranging from mild cognitive impairment to a vegetative state. Early prognostication in comatose patients after ROSC remains challenging. Recent recommendations suggest carrying out clinical and paraclinical tests during the first 72 h after ROSC, to predict a poor neurological outcome with a specificity greater than 95% (no pupillary and corneal reflexes, bilaterally absent N20 somatosensory evoked potential wave, status myoclonus, highly malignant electroencephalography including suppressed background ± periodic discharges or burst-suppression, neuron-specific enolase (NSE) > 60 µg/L, a diffuse and extensive anoxic injury on brain CT/MRI), but with a low sensitivity due to frequent confounding factors. The heart rate variability (HRV) is a simple and non-invasive technique for assessing the autonomic nervous system function. In patients with a recent myocardial infarction, reduced HRV is associated with an increased risk for malignant arrhythmias or death. In neurology, reduced HRV is associated with a poor outcome in severe brain injury patients and allows to predict early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. A reduced HRV could be a sensitive, specific and early indicator of diffuse anoxic brain injury after CA. This multicenter prospective cohort study assesses the added value of early HRV (within 24h of ICU admission) for neuroprognostication after cardiac arrest.
1. The primary aim of this study is to investigate the correlation between the length of ICU stay and a newly developed FIVE score in neuro-intensive care patients. 2. The secondary objectives are to evaluate the impact of the FIVE score on hospital length of stay, Modified Rankin Scale, and mortality, as well as to determine the correlation between the GCS, FOUR, and FIVE scores
Concussions (also known as mild traumatic brain injury) are common in young children. In some children, they can lead to short- and long-term difficulties. However, our knowledge of the exact consequences of injuries on young children's brains and behavior is limited. These consequences may be different in children under 6, as their brains are fragile and undergoing significant developmental changes. The aim of this study is to determine the extent to which a concussion sustained before the age of 6 years is associated with changes in young children's brain structure, function and behaviours, using a brain imaging. In this study, the results of a group of 30 children with a concussion will be compared to those of 30 children of the same age with an orthopaedic injury to the upper or lower limbs.
Acquired brain injury (ABI) is one of the biggest cause of death and disability in the world. Patients with ABI often have difficulties with swallow and breath. The study purpose is to evaluate if the Expiratory Flow Accelerator (EFA) technology has positive effects on the respiratory and swallowing function in patients with acquired brain injury (ABI). Researchers recruit patients at Centro Ettore Spalenza-Fondazione Don Carlo Gnocchi in Rovato, Italy. To partecipate, patients should satisfy certain eligibility criteria; they will not be enrolled if they satisfy exclusion criteria. If a patient can be recruited, researchers conduct the baseline assessment lasting 1 one week. After that, the patient will be randomized to the study or control group. If the patient is in the control group, he will receive a traditional rehabilitation treatment. Otherwise, the patient will receive an additional treatment with the EFA device. Researchers will assess again the patient (with the same procedures of baseline assessment) after 8 weeks of treatment. They want to see if the EFA device could help patients with ABI to improve their health conditions.
Feasibility and safety of targeting neutral vs liberal fluid balance in traumatic brain injured patients: a phase II randomized controlled trial