View clinical trials related to Brain Injuries.
Filter by:In clinical practice, hospital admission of patients with altered level of consciousness ranging from drowsiness to decreasing response states or coma is extremely common. This clinical condition demands effective investigation and early treatment. Imaging and laboratory tests have played increasingly relevant roles in supporting clinical research. One of the main causes of coma is intracranial hypertension (IH), with traumatic brain injuries (TBI) and cerebral hemorrhages being the major contributors to its development. IH increases the risk of secondary damage in these populations, and consequently, morbidity and mortality. Clinical studies show that adequate intracranial pressure (ICP) control in TBI patients reduces mortality and increases functionality. Unfortunately, the most accurate way to measure and evaluate the ICP is through a catheter located inside the skull, and its perforation is required for this purpose. Several studies have attempted to identify noninvasive solutions for ICP monitoring; however, to date, none of the techniques gathered sufficient evidence to replace invasive monitors. Recently, an extensometer device has been developed, which only maintains contact with the skull's skin and therefore eliminates the need for its perforation, being able to obtain recordings of cranial dilatation at each heartbeat and consequently reflecting brain compliance. In vivo studies have identified excellent qualitative correlation with catheter ICP recordings. However, this device was evaluated only in a limited number of clinical cohorts and the correlations between the information provided by this device with patients outcomes is still poor. Therefore, this project aims primarily to evaluate the use of this noninvasive brain compliance monitoring system in a cohort of TBI patients.
Brain injuries may cause the loss of the ability to see portions of the visual field, the so-called visual field defects (VFDs). VFDs significantly impact the survivors' functional recovery and quality of life, with the majority of patients displaying no spontaneous recovery or being left with residual deficits. Among the available therapies for VFDs, the compensatory scanning training is considered the most promising. Yet, current evidence is insufficient to recommend it in clinical practice, and the scientific community has stressed the need of more high-quality research. The present randomized clinical trial in patients with chronic VFDs caused by brain lesions aims at verifying the feasibility and efficacy of a novel telerehabilitation using a multisensory scanning therapy, by measuring its effects on visual functions and daily activities, and by looking for neural indicators of the therapy-induced improvements.
This study is to explore the clinical effect of refined nursing in rehabilitation training for patients with brain injury during the recovery period. Patients in the control group were provided with routine nursing intervention, while patients in the study group adopted a nursing mode based on the concept of refinement treatment. Comparison was made in terms of the Glasgow Coma Scale (GCS) score, cognitive function score, functional independence score, nursing satisfaction, and incidence of complications.
Severe traumatic brain injury with a decrease in cerebral oximetry is associated with multiple impaired systemic microcirculations, more morbidities, and a higher mortality rate. When using the brain as an index organ, interventions to improve brain oxygen delivery may have systemic benefits for these patients.
This was a multicenter randomized controlled study of 98 severe Traumatic Brain Injury patients with tracheostomy. Patients enrolled were divided randomly into the observation group with Intermittent Oro-esophageal Tube Feeding (n=50) or the control group with Nasogastric tube feeding (n=48) for enteral nutrition support, respectively. Nutritional status, complications, decannulation of tracheostomy tubes and level of consciousness on day 1 and day 28 were recorded and compared.
Music therapy has received more attention with its surging application in neuro-rehabilitation overseas. Given the dearth of music therapy and cognitive rehabilitation research conducted in Malaysia, this pilot study intended to investigate the effect of active and passive music therapy interventions versus the standard care condition in cognition among adults with neuro-rehabilitation needs.
The goal of this clinical trial is to compare effectiveness of two interventions for family caregivers of patients with acquired brain injury who are transitioning home after inpatient rehabilitation. The main question it aims to answer is whether these interventions reduce caregiver stress and burden, compared to usual care. Secondary effects include the impact on caregivers' depressive symptoms and perceived self-efficacy as a caregiver. The study will also try to determine if caregivers will engage in these interventions during the acute (inpatient rehabilitation) stage of injury. Participants in the study are family members of the ABI patient, aged 18 year or older, who will be responsible for the patient's care and supervision once discharged home from inpatient rehabilitation. The two interventions, one clinician-led and one peer-led, will be compared to usual care.
Traumatic brain injury (TBI) is a leading cause of long-term disability and mortality. The costs associated with hospitalization, rehabilitation, and productivity losses after injury impose a significant socioeconomic and healthcare burden. TBI patients often struggle with symptoms such as dizziness and post-concussion syndrome, preventing them from returning to their previous level of functioning. This leads to negative consequences, including unemployment, psychosocial adjustment difficulties, and decreased quality of life, particularly affecting young working-age individuals. The purpose of this study was to investigate whether vestibular rehabilitation exercises for mild traumatic brain injury (mTBI) patients could improve symptoms of dizziness, post-concussion syndrome, physical balance, anxiety, and quality of life. The study aimed to provide individualized care plans for mTBI patients, reducing symptom burden, lowering healthcare costs, and enhancing their quality of life.
Homonymous visual field defects (HVFDs) following acquired brain lesions affect independent living by hampering several activities of everyday life. Available treatments are intensive and week- or month-long. Transcranial Direct current stimulation (tDCS), a plasticity-modulating non-invasive technique, could be combined with behavioral trainings to boost their efficacy or reduce treatment duration. Some promising attempts have been made pairing occipital tDCS with visual restitution training, however less is knows about which area/network should be best stimulated in association with compensatory approaches, aimed at improving exploratory abilities, such as multisensory trainings. In the present double-blind, sham-controlled study, we assess the efficacy of a multisensory training combined with tDCS. 3 groups of participants with chronic HVFDs underwent a 10-day (1.5 hrs/day) compensatory audio-visual training combined with either real anodal tDCS applied to the ipsilesional occipital tDCS (Group 1), or the ipsilesional posterior parietal cortex (Group 2), or a sham, placebo, tDCS (Group 3). The training require the participants to orient their gaze training spatio-temporally congruent, cross-modal, audio-visual stimuli (starting from a central fixation) and press a button as quick as possible upon the detection of the visual stimulus. All stimuli are presented on 2mx2m panel embedded with 48 LEDs and loudspeakers (Bolognini et al., 2010, Brain Research) All participants underwent a neuropsychological assessment of visuospatial functions prior to the beginning of the training (t0), at the end of the training (t1), and at 1-month (t2) and 4-month follow-up (t3). The assessment includes: a visual detection task, three visual search tasks (EF, Triangles, and Numbers; Bolognini et al., 2005, Brain), and a questionnaire about functional impact of the HVFDs in the activities of daily living.
The goal of this descriptive non-randomized feasibility study is to assess aspects of feasibility of the intervention arm in a planned full-scale randomized controlled trial testing the effectiveness of a self-management program for persons who have sustained a moderate to severe traumatic injury. All outcomes will be evaluated based on pre-defined success criteria. The main outcomes in the feasibility study are: - Consent rate of eligible patients - Drop-out rate - Attendance rate in the program sessions Secondary outcomes are the participants' acceptance, reception, and perceived usefulness. Other outcomes are fidelity and protocol adherence, as well as the feasibility of a telehealth version of the program and the data collection methods. The participants will receive a group-based self-management program consisting of eight weekly 2.5-hour sessions delivered by a multidisciplinary team. The self-management program is manualized and includes psychoeducation, training in self-management skills and strategies, setting goals, action planning, and sharing of experiences. The participants will also complete the pre- and post-intervention assessments.