View clinical trials related to Brain Injuries, Traumatic.
Filter by:The goal of this clinical trial is to compare outcomes for standard vestibular rehabilitation home program to a digital vestibular rehabilitation home program in adults with dizziness related to mild traumatic brain injury (mTBI). The main question is whether participants who use the digital format of vestibular rehabilitation improve to a greater extent at discharge than those who use the standard format. Participants will undergo a customized vestibular rehabilitation home exercise program per standard of care, consisting of gaze stabilization, habituation, balance and gait exercises, and endurance training under the supervision of a physical therapist. Participants will complete the gaze stabilization and habituation exercises 2-3 times per day and the balance and gait exercises 1 time per day for 4 weeks. Participants will be tested before and after the 4-week intervention. At the initial session, the researcher will perform standard clinical tests of the inner ear balance system. Also at the initial session, the researcher will perform standard clinical tests of balance and walking and questionnaires about the impact of dizziness on daily activities. At the final session, the researcher will repeat the tests of balance and walking and questionnaires. Three months after completing the intervention participants will complete an online questionnaire about the impact of dizziness on daily activities.
Older veterans with a history of mild brain trauma exhibit early cognitive challenges, especially in driving-related tasks. This is attributed to alterations in the brain's excitatory/inhibitory (E/I) balance. This pilot project investigates this phenomenon by leveraging electroencephalography (EEG) to measure parietal lobe alpha rhythms during visual attention tasks. The hypothesis is that targeted visual attention training can modulate these alpha rhythms, improving instrumental activities in daily life. However, outcomes from such training vary, possibly due to individual differences in cortical inhibitory functions. This study will assess the relationship between EEG measures of E/I balance pre- and post-visual attention training and its effects on processing speeds in aging veterans. Our findings aim to provide a foundation for customized therapies and interventions for veterans with and without a history of brain trauma.
The goal of this clinical trial is to acknowledge the effects of transcranial direct current stimulation as an adjuvant with gaming rehabilitation for upper limb function rehabilitation in paediatric population with non-progressive brain damage. The main questions it aims to answer are: - Does tDCS boost upper limb function rehabilitation results adding as an adjuvant in paediatric brain damage? - What domains related with upper limb function are most influenced by tDCS stimulation? - What clinical variables are the best to predict the efficacy of the combined treatment? - If the selected intervention causes changes in cognitive domains, and, if it occurs, see their relationship with the proposed intervention and the motor outcomes. As a general objective, this trial seeks the validation of a protocol of non-invasive brain stimulation with tDCS as a complementary therapy for peadiatric population with brain injuries. Participants will be randomly allocated into two groups: experimental group will receive anodal tDCS plus upper limb rehabilitation gaming system rehabilitation and control group will receive sham tDCS plus rehabilitation gaming system for upper limb rehabilitation. Both groups will conducted a virtual reality program with upper limb exercises while been stimulated either with anodal tDCS or sham tDCS. Researchers will compare experimental and control groups to see if there is a difference in upper limb function and cognitive functions.
The purpose of this study is to understand how a stepped-care model of Parent-Child Interaction Therapy (Step-Up PCIT) addresses child behavioral problems among children between the ages of 2 and 7 with a traumatic brain injury (TBI).
Our goal is to perform a pilot, single center study to evaluate the efficacy of whole blood (WB) in subjects with TBI, intracranial hemorrhage, and anemia compared to blood component therapy.
The primary outcome of this study was to identify mortality predictors/risk factors affecting mortality and secondary outcome was to determine the distribution of brain injury types and other parameters according to type of trauma in patients with TBI treated in anesthesia-reanimation tertiary ICU.
The goal of this observational study is to evaluate the safety of heading in football. We will study the release of biomarkers in blood that reflect microscopic neural damage. The main questions this study aims to answer are: - Does participation in a football match lead to a change in biomarkers that reflect microscopic neural damage? - Is the dose of exposure during a football match related to the magnitude of change in biomarkers that reflect microscopic neural damage? Participants will participate in a regular football match and provide blood samples before and right after the football match. The football match will be recorded on video to count the number of headers of all participants.
Traumatic brain injuries (TBI) are one of the leading causes of death and disability worldwide. These patients are burdened by physical, cognitive, and psychosocial deficits, leading to an important economic impact for society. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. TBI related disability is linked to the severity of the initial injury but also to the following neuroinflammatory response which may persist long after the initial injury. Moreover, a growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post traumatic disorders. Consequently, new therapies triggering immunomodulation and promoting neurological recovery are the subject of major research efforts. In this context, mesenchymal cell-based therapies are currently investigated to treat various neurological disorders due to their ability to modulate neuroinflammation and to promote simultaneous neurogenesis, angiogenesis, and neuroprotection. Clinical trials using intravenous MSC have been conducted for various pathologies, all these studies showing a good safety profile. The hypothesis of the study is that intravenous repeated treatment with MSC derived from Wharton's Jelly of the umbilical cord may be associated with a significant decrease of post-TBI neuroinflammation and improvement of neuroclinical status. The main objective of the study is to evaluate the effect of iterative IV injections of MSC on post-traumatic neuroinflammation measured in corpus callosum by PET-MRI at 6 months in severe brain injured patients unresponsive to simple verbal commands 5 days after sedation discontinuation.
This study is intended to evaluate the feasibility of using VisAR augmented reality surgical navigation during placement of an external ventricular drain (EVD). The investigators are interested in confirming the design of the VisAR headset is compatible with this bedside procedure.
This randomized waitlist control trial will evaluate the effects of a psychoeducational intervention called Resources for Enhancing All Caregivers' Health - Traumatic Brain Injury (REACH TBI) to decrease caregiver strain (primary outcome) and improve caregiver self-efficacy, anxiety, depression, and health care frustrations (secondary outcomes). This study will modify and adapt an award-winning caregiver intervention, Resources for Enhancing All Caregivers Health in the Department of Veterans Affairs (REACH VA), to support the needs of Caregivers of Veterans and Service Members with TBI.