View clinical trials related to Brain Injuries, Traumatic.
Filter by:The purpose of this study is to evaluate the effectiveness of nebulized lidocaine before Endotracheal suctioning (ETS) compared to instilled lidocaine and the effectiveness of aerosolized lidocaine versus instilled normal saline before ETS in attenuating the increase of intracranial pressure (ICP) in severe head injured children and to evaluate the feasibility of a trial involving instilled lidocaine and aerosolized lidocaine for the management of ETS and to evaluate the safety of nebulized lidocaine in traumatic brain injury (TBI) compared to instilled lidocaine and instilled sodium chloride (NS).
Traumatic brain injury (TBI) due to trauma and/or neurologic disease is a leading cause of long-term disability in the United States. The loss of balance for people with a traumatic brain injury can have a large effect on their walking abilities and this can come with a number of challenges. There is a greater risk of falling after being discharged from the hospital. In addition, people are more likely to become sedentary after TBI, which leads to the loss of muscle strength. To help provide the best care, clinicians need accurate measurements when people begin their therapy, as well as throughout to ensure they are making appropriate progress. The tests currently used by clinicians may not provide the most accurate measurements that show what a person is capable of physically doing. The study you are being asked to participate in aims to provide more accurate measurements by using a robotic treadmill device and by assessing motivating factors that are important to you. The treadmill device will allow us to more accurately test your walking ability in a safe, fall-free environment.
This study will fill important knowledge gaps in the availability of best practices that use innovative methods to integrate the cognitive and vocational needs of students with TBI who will be transitioning from 2- and 4-year postsecondary education to employment. Best practices exist from the assistive technology (AT) field to help people compensate for cognitive impairments, and from the vocational rehabilitation (VR) field to enhance employment outcomes for individuals with disabilities. However, these practices have not been integrated to provide needed supports and services to improve the employment outcomes of students with TBI. The study's goal is to expand the availability of innovative practices by testing the efficacy of a technology-driven, long-term, and resource-rich individualized support program that merges assistive technology for cognition and vocational rehabilitation practices. The end products will include technology application guidelines, training and procedural manuals, and resource information that rehabilitation professionals and students with TBI can utilize to enhance technology and mentoring proficiency, academic success, self-determination, and long-term career success for students with TBI.
Prospective observational study on patients undergoing decompressive craniotomy
This study aims to assess the effect and safety of erenumab compared to placebo for the treatment of acute posttraumatic headache (PTH) in military service members and civilians with mild traumatic brain injury (mTBI).
Approximately 5.3 million people live with a long-term disability resulting from a traumatic brain injury (TBI) and between 5-8% of those older than 60 suffer from Alzheimer's disease or other forms of dementia (ADRD). Consequences of these conditions can result in dramatic and persistent changes in functioning, impacting not only the patients, but also loved ones who become informal support persons. Many existing services help the family in the moment, but do not address long-term wellness. Thus, the purpose of this research study is to compare the effect of two different types of group wellness treatments for individuals with chronic mild TBI, moderate to severe TBI, and ADRD and their support persons.
The objective of this study is to assess the accuracy of a portable version of the EyeBOX device, an eye-tracking based diagnostic, in comparison to a clinical reference standard of concussion. The utility of the portable assessment to aid in the monitoring of symptoms over time after an initial diagnosis of concussion will also be evaluated.
The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of global cerebral autoregulation and a significant predictor of unfavorable outcomes. However, calculations require continuous, high-resolution monitoring and are currently limited to specialized ICUs with dedicated software. To overcome this problem, new indices calculated using one-minute average data, instead of 10-second average data as performed by the PRx, have been proposed. The study aims to test new physiological indices appropriately modified to adapt to the scarcity of output data generated by standard hospital systems (frequency ~0.0033 Hz, approximately a 5-minute period) and to evaluate their association with outcome measures.
Introduction Patients with severe brain injury are often restricted to bed rest during the early period of brain injury which may lead to unwanted secondary complications. There is lack of evidence of when to initiate the first mobilisation. The Sara Combilizer® is an easy and efficient tool for mobilising patients with severe injuries, including brain injury. Through a randomised cross-over trial the investigators will investigate the impact of early mobilisation on patients with severe acquired brain injury caused by traumatic brain injury, subarachnoid brain injury or intracranial haematoma. The investigators hypothesise that mobilisation using the Sara Combilizer® does not affect partial oxygenation of brain tissue.
The purpose of this study is to assess the safety, tolerability, and pharmacokinetics of different dose levels of PRV-002 in Health Volunteers