View clinical trials related to Brain Injuries, Traumatic.
Filter by:The global objective of this study is to establish the safety and investigate the potential treatment effect of an intravenous infusion of HB-adMSCs (Hope Biosciences adipose-derived mesenchymal stem cells) on brain structure, neurocognitive/functional outcomes, and neuroinflammation after traumatic brain injury and/or hypoxic-ischemic encephalopathy in adults.
This intervention study aims to investigate the effects of the m-Health supportive care transition program on response patterns (transition stress and the burden of caregiving) among traumatic brain injury (TBI) caregivers and patients' readmission rate one month after hospital discharge. Specific objectives: 1. Compare the response patterns (transition stress and the burden of caregiving) of TBI caregivers before and after receiving the program within the group. 2. Compare TBI caregivers' response patterns (transition stress and the burden of caregiving) between the control and intervention groups. 3. Compare patients' readmission rates at one month after hospital discharge between the control and intervention groups TBI caregivers are divided into two groups: the intervention group (who receive the transitional care program) and the control group (who receive the standard care program) according to standard operating procedures applicable in the hospital. If there is a comparison group: Researchers will compare [insert groups] to see if [insert effects]
The purpose of this study is to investigate the accessibility of beauty products for individuals with upper extremity disabilities. By examining various factors such as packaging design, product applicators, and ease of use, this research aims to identify barriers faced by individuals with upper extremity disabilities or visual deficits when using beauty products. The study seeks to provide insights and recommendations for improving the accessibility of beauty products, ultimately promoting inclusivity and enhancing the overall beauty experience for individuals with disabilities.
The purpose of this research is to evaluate the potential benefits of two Intervention programs in adults with TBI to improve well-being and other outcomes that are maintained over time.
Upwards of 3.8 million concussions occur annually in the United States. Driving is a highly complicated activity that requires visual, motor, and cognitive skills, which are commonly impaired after concussion. Yet, the time course of post-concussion driving impairment has not been characterized. There is a critical need to 1) determine when concussed individuals should return to driving and 2) identify the key concussion assessment predictors of readiness to return to driving. In the absence of formal recommendations, impaired concussed drivers are at risk to themselves and others on the road. The first specific aim is to compare simulated driving between concussed individuals and non-concussed yoked matched controls across five longitudinal timepoints (pre-injury baseline, day 2, day 4, asymptomatic, and unrestricted medical clearance) and daily naturalistic driving from day 2 to day 9. Driving recommendations must be appropriate and necessitated by concussion impairments, since excessively strict recommendations wrongfully strip concussed patients of their independence and may dissuade individuals from seeking medical care. The second specific aim is to identify widely used concussion assessment outcomes that predict simulated driving performance among concussed individuals throughout concussion recovery. To address these aims, 100 concussed and 100 yoked matched control young adult college athletes will complete a simulated driving assessment and a robust concussion assessment battery at pre-injury baseline, day 2, day 4, asymptomatic, and unrestricted medical clearance. Naturalistic driving (measured with in-car global positioning systems) will be captured from day 2 to day 9 (7 days total). This study will determine the acute and subacute time course of post-concussion driving impairment and determine key predictors of post-concussion driving performance. Results from this innovative approach will have a broad and positive impact that will improve the safety of both concussed individuals and the general population, guide the practices of health professionals, inform the future work of researchers, and substantiate the work of policy-makers by providing evidence-based recommendations for managing post-concussion driving.
The purpose of the project is to evaluate the feasibility, acceptability, and effectiveness of the internet-delivered Acceptance and Commitment Therapy treatment (I-Navigator ACT) for parents who experience stress, distress, depression or anxiety that may be associated with being a parent of a child with disabilities. The project consists of three studies: Study 1: An open feasibility trial in which parents participate in an individual, clinician-supported internet-delivered Acceptance and Commitment Therapy treatment. Study 2: A randomized controlled trial in which participants are randomly assigned either: 1. Navigator ACT group treatment, where parents participate in an Acceptance and Commitment Therapy group together with other parents, led by two group leaders, or 2. I-Navigator ACT internet-delivered Acceptance and Commitment Therapy treatment, where the parent participates on their own, coached by a clinician via a message function. Study 3: A qualitative study in which a smaller sample of parents from the open feasibility trial participate in semi-structured interviews. The interviews take place after the parents have completed I-Navigator ACT. All three studies are conducted in a clinical health care context.
The purpose of this study is to test the efficacy of a walking and balance training program designed to safely challenge and improve walking performance and balance in relation to walking speed, strength, endurance, and balance after traumatic brain injury (TBI). The aim and primary hypothesis of this research project is: Aim) Test and implement a new personalized intervention strategy, in addition to usual and customary care at an inpatient rehabilitation clinic, to improve patient outcomes with secondary conditions associated with impaired balance and walking that typically occur post brain injury. After validation of the locomotor Battery of tests, we will implement a personalized training strategy for individuals based on their battery profile. Hypothesis) Individuals training with this individualized protocol will demonstrate improved walking and balance outcomes and those with lesser pre-intervention impairment will improve at a greater rate than those with greater pre-intervention impairment.
This is a hybrid type III implementation-effectiveness trial; this study design blends elements of implementation and clinical effectiveness research, with the primary aim of determining the utility of an implementation strategy and a secondary aim of assessing clinical outcomes associated with the implementation trial. Consistent with best practices for this type of design, the study team will conduct a randomized test of the effect of implementation strategy on effective delivery of the Online EmReg intervention in clinical practice. Specifically, the study team will compare Standard Training (a 3-hour on-demand training workshop) to Extended Training, (a 3-hour on-demand training workshop with 3 months of bi-weekly consultation). The research team's primary aim is to determine the optimal strategy to train clinicians in effectively delivering Online EmReg, and secondary aim is to assess patient improvement per clinician-administered DERS. Outcome measures will be assessed via self-report surveys, performance evaluations (via role-plays), and tracked clinician participation and fidelity. Study participation is expected to last up to 15 months.
Despite racial/ethnic disparities in outcomes for younger adults with traumatic brain injury (TBI), there are no U.S. standards for TBI transitional care for patients discharged home from acute hospital care. To enhance the standard of care, the investigators will examine the efficacy of the existing intervention named BETTER (Brain Injury, Education, Training, and Therapy to Enhance Recovery), a culturally-tailored, patient- and family-centered TBI transitional care intervention, compared to usual care, among younger adults with TBI and families. The knowledge generated will drive improvements in health equity for younger adults with TBI of various races/ethnicities and families, resulting in improved health of the public.
Repetitive blast exposure has been shown to lead to more severe neurobehavioral impairments versus a single exposure. Blast-induced Traumatic Brain Injury (TBI) can lead to short- and long-term adverse outcomes Even mild brain injuries can impair neurocognitive performance, and repeated injuries can amplify negative outcomes. Service members with repeated exposure to low-level blasts as a necessary part of their job or training display altered neural activity during a memory task that is paralleled by a reduction in accuracy on neurocognitive memory tasks. As a result, it is important to monitor service members that are exposed to multiple blast-generated mTBIs to allow the earliest identification of acute or chronic brain and body insult and provide individualized measures of time to recovery. While TBI is clinically diagnosable, the methods of diagnosis have up to now been typically expensive and immobile, and treatments and interventions sparse. The investigators will conduct a longitudinal assessment of mTBI brain biomarkers by collecting repeated measures of FDA approved mTBI brain injury biomarkers, correlated with sound and blast exposure, as well as continuous monitoring through smart watches (activity, sleep, biometrics, calorie expenditure, balance) and analyte data through analyte sensors (glucose, lactate, ketones). Study data will be organized into categories and presented to participants daily within the application and will be securely stored within the application. At the completion of the study, participants will be provided with the study data digitally within the mobile application and study data will also be provided to the credentialed unit medical provider to enable it to be ported to the participants' electronic medical record. This study will create a continuous record of blast overpressure and sound exposures and correlate those to the participants health state over the course of several 9-week courses. This will enable an assessment of individualized susceptibility to brain injury as well as providing novel data on time to recovery. The investigators hope to develop dynamic and accurate risk profiles that are individual and will lead to further understanding of how to protect participants from mTBI (mild TBI) events.