View clinical trials related to Bone Marrow Diseases.
Filter by:St. Jude Children's Research Hospital is studying the best ways to prevent pain during and after procedures such as bone marrow aspiration and lumbar puncture with intrathecal (in the spinal fluid) chemotherapy. Researchers will study the effectiveness of combining anesthetics (medicines that help people sleep) and analgesics (medicines that relieve pain). Researchers believe that a combination of fentanyl (analgesic) and propofol (anesthetic), along with applying the skin-numbing-cream EMLA or L.M.X4™ on the area where the procedure is performed, will provide better pain control. Each patient enrolled on this study will have three different anesthetic combinations for three different procedures, in order to determine which combination worked best for each child.
The main purpose of this study is to look at the effects (good or bad) that Atrasentan given alone and Atrasentan given with Zometa has on levels of bone formation and bone destruction in men with prostate cancer that has spread to the bones.
The researchers hypothesize that it will be possible to perform unrelated bone marrow or cord blood transplants in a safer manner by using less intensive therapy yet still achieve an acceptable level of donor cell engraftment for non-malignant congenital bone marrow failure disorders.
The purpose of this study is to determine the safety and effectiveness of oral SCIO-469 in patients with myelodysplastic syndromes. SCIO-469 belongs to a new class of treatments that inhibit expression and activity of cytokines that play a role in the progression of MDS.
The purpose of this trial is to determine the effectiveness of AMG 162 in reducing urinary N-telopeptide in advanced cancer subjects with bone metastases.
This study is to evaluate various doses and schedules for denosumab administration and characterize the safety profile in this indication.
This study will examine whether cytokine gene polymorphisms affect the progression or response to therapy of bone marrow failure disorders. Cytokine genes instruct cells to produce proteins called cytokines that influence immune system response. As with many genes, the cytokine genes differ slightly from person to person. These differences are called gene polymorphisms. Different patients with the same bone marrow failure disease often progress and respond to treatment differently. This study will look at the possible role of cytokine gene polymorphisms in these differences. Patients between 2 and 80 years old who have participated in an NHLBI Hematology Branch treatment protocol for acquired aplastic anemia, myelodysplastic syndrome, or pure red cell aplasia are recruited to participate in this study. Blood collected and stored at the time of screening for the treatment protocol will be tested for cytokine gene polymorphisms. No additional tests, procedures, or treatments are involved in this study.
This study will examine the use of the humanized Mik-Beta-1 (Hu Mik-(SqrRoot) 1) monoclonal antibody in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Some patients infected with the human T-lymphotropic virus type 1 (HTLV-1) virus develop HAM/TSP, a disease in which the immune response to HTLV-1 becomes directed against the person's own body in what is called an autoimmune response. Hu-Mik-Beta-1 is a genetically engineered antibody that blocks the action of a chemical produced by the body during infection or inflammation called interleukin 15 (IL-15). Blocking IL-15 may prevent the autoimmune response that results in HAM/TSP. Patients 18 years of age and older with HAM/TSP may be eligible for this study. Candidates are screened with a medical history and physical examination, blood and urine tests, and an electrocardiogram. Participants undergo the following procedures: 1. Baseline visit(s): Repeat physical examination and blood and urine tests, as well as the following: - Lumbar puncture: A local anesthetic is injected to numb the skin of the lower back. A needle is inserted in the space between the bones where the cerebrospinal fluid that bathes the brain and spinal cord circulates below the spinal cord. About 4 tablespoons of fluid is collected through the needle. - Magnetic resonance imaging (MRI): This test uses radio waves and magnets to produce images of body tissues and organs. The patient lies on a table that slides into a metal cylinder surrounded by a strong magnetic field. During part of the scan, a contrast agent is injected to brighten the images. - Apheresis: This procedure is used to collect large quantities of white blood cells. Whole blood is collected through a needle in an arm vein and directed into a machine that separates it into its components by spinning. The white cells and plasma are removed and the rest of the blood (red cells and platelets) is returned to the body through the same needle. 2. Hu Mik-Beta-1 treatment: Infusions of Hu Mik-Beta-1 are given through a vein every 3 weeks for nine doses. The first treatment requires at least an overnight hospital stay; subsequent infusions are given in the outpatient clinic. 3. Blood and urine tests and a physical examination at every treatment visit and a skin test at one treatment visit. 4. Research tests at the end of the 24-week treatment period, including lumbar puncture (spinal tap), MRI scan, and apheresis. 5. After completing treatment, patients have three follow-up clinic visits for blood and urine tests, and a skin test at one follow-up visit.
This study will use three different magnetic resonance imaging (MRI) techniques to study HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/STP)-a disease of slowly progressive weakness in the legs. It is not known how the HTLV-1 virus causes this disease, but it is thought that as the body's immune system tries to destroy the virus, parts of the nervous system-primarily the spinal cord-are damaged. Patients 18 years of age and older with HAM/TSP and healthy normal volunteers may be eligible for this study. Participants will undergo diffusion tensor MRI, MR-spectroscopy, and magnetization transfer imaging to look at different compositional, architectural, and microscopic properties of the brain. All of these techniques are similar to conventional MRI, and like the conventional method they use a strong magnetic field and radio waves to measure structural and chemical changes in brain tissue. Each of the three scans will be done on separate days, each lasting about 1 hour. For the procedures, the patient or volunteer lies on a stretcher in a narrow metal cylinder (the scanner) and is asked to remain still for 15 to 30 minutes at a time. A special lightweight coil may be placed on the head to enhance the brain images. The subject can communicate with the person doing the scan at all times.
The purpose of this study is to determine whether methionine, an amino acid present in low doses in the normal diet, can improve myelopathy or stop its progression.