View clinical trials related to Artificial Intelligence.
Filter by:Trigeminal neuralgia (TN) is the most common cause of facial pain. Medical treatment is the first therapeutic choice whereas surgery, including Gamma Knife radiosurgery (GKRS), is indicated in case of pharmacological therapy failure. However, about 20% of subjects lack adequate pain relief after surgery. Virtual reality (VR) technology has been explored as a novel tool for reducing pain perception and might be the breakthrough in treatment-resistant cases. The investigators will conduct a prospective randomized comparative study to detect the effectiveness of GKRS aided by VR-training vs GKRS alone in TN patients. In addition, using MRI and artificial intelligence (AI), the investigators will identify pre-treatment abnormalities of central nervous system circuits associated with pain to predict response to treatment. The investigators expect that brain-based biomarkers, with clinical features, will provide key information in the personalization of treatment options and bring a huge impact in the management and understanding of pain in TN.
To conduct an single blinded, non-randomized, prospective, single center trial to validate the performance of a novel state-of-the-art Artificial Intelligence model (AI-Model) for colorectal lesion detection during routine diagnostic colonoscopy and to evaluate its feasibility in daily endoscopy. Consecutive patients referred for a screening, surveillance or diagnostic colonoscopy will be included
The goal of this observational study is to establish and verify the Chinese version of surgical risk assessment system and explore its clinical application. The main questions it aims to answer are: The process of establishing a Chinese version of surgical risk assessment system; What is the accuracy of the system; How can the system be used in clinic; How does this system compare with other systems (such as NSQIP). Participants will comprehensively collect the general information, examination and pathological information of the patients, using machine learning and artificial intelligence methods for data processing. Finally, the Chinese version of the surgical risk assessment system will be established. After the system is established, investigators will evaluate the accuracy of the system and compare it with other related systems.
In this study, we proposed a prospective study about the effect of the automatic surveillance system on surveillance rate of colorectal postpolypectomy patients. The enrolled patients were divided into group A with intelligent surveillance system, group B with manual reminder, and group C with natural state. The surveillance among the three groups were compared.
To evaluate the usefulness of Deep neural network (DNN) in the evaluation of mediastinal and hilar lymph nodes with Endobronchial ultrasound (EBUS). The study will explore the feasibility of DNN to identify lymph nodes and blood vessel examined with EBUS.
To investigate the degree of the real-time detection and classification system for increasing the adenoma detection rate during colonoscopy.
A clinical trial of the effectiveness and safety of intestinal polyp digestive endoscopy-assisted diagnosis software used in the analysis of colonoscopy medical images generated by electronic digestive endoscopy equipment.
Our study presents a detection model predicting a diagnosis of jaundice (clinical jaundice and occult jaundice) trained on prospective cohort data from slit-lamp photos and smartphone photos, demonstrating the model's validity and assisting clinical workers in identifying patient underlying hepatobiliary diseases.
The purpose of this study is to describe the design, methodology and evaluation of the preclinical test of Carebot AI CXR software, and to provide evidence that the investigated medical device meets user requirements in accordance with its intended use. Carebot AI CXR is defined as a recommendation system (classification "prediction") based on computer-aided detection. The software can be used in a preclinical deployment at a selected site before interpretation (prioritization, display of all results and heatmaps) or after interpretation (verification of findings) of CXR images, and in accordance with the manufacturer's recommendations. Given this, a retrospective study is performed to test the clinical effectiveness on existing CXRs.
The study aims to understand which are the most relevant parameters at admission which may allow to predict the hospital length of stay (HOLS) and mortality after discharge of oncologic hospitalized patients. This is the first multicentric prospective observational study that tries to understand the complexity of the hospitalized oncologic patients. A comprehensive analysis will be performed with the help of the nutrition, nursery, internal medicine and oncology teams.